Filtern
Fachbereich / Organisatorische Einheit
- Fachbereich Chemie (295) (entfernen)
Erscheinungsjahr
Dokumenttyp
- Dissertation (295) (entfernen)
Sprache
- Deutsch (242)
- Englisch (52)
- Mehrsprachig (1)
Schlagworte
- Katalyse (7)
- Palladium (6)
- Polyphenole (6)
- Apoptosis (5)
- Eisen (5)
- Oxidativer Stress (5)
- Zeolith (5)
- Ab-initio-Rechnung (4)
- Clusterion (4)
- Eisen (4)
-
Einfluss von Sauerstoff auf die Polymerisation von Rotweinpigmenten (2018)
- Wird Rotwein im Holzfass gelagert, kommt es meist zu einer Intensivierung und Stabilisierung der Weinfarbe. Ursache ist der durch die Fassdauben diffundierende Sauerstoff, der Ethanol zu Acetaldehyd oxidiert. Dieses bildet Ethylidenbrücken zwischen Anthocyanen und Flavanolen, wodurch intensiv violett gefärbte Pigmente entstehen. Bisher wurden nur die dimeren ethyliden-verbrückten Anthocyan-Flavanol Addukte umfassend erforscht, die jedoch im Wein nicht stabil sind und zu Folgeprodukten reagieren. Deren Struktur ist bisher wenig erforscht. Ein Ziel dieser Arbeit bestand daher darin, die Reaktionsprodukte der ethyliden-verbrückten Anthocyan-Flavanol Dimere im Rotwein zu untersuchen. Dabei wurden erstmals Polyphenoladdukte mit bis zu drei Ethylidenbrücken massenspektrometrisch nachgewiesen. Dies zeigt, dass Weinpigmente durch die Bildung mehrerer Ethylidenbrücken polymerisieren können. Es wurden außerdem mehrere Pigmente gefunden, bei denen ein Anthocyan über zwei Ethylidenbrücken mit anderen Polyphenolen verbunden war. Dies widerlegt die bisherige Annahme, dass sich Anthocyane nur in terminalen Positionen eines polymeren Pigments befinden können. Durch die Quantifizierung ethyliden-verbrückter Di- und Trimere mittels Massenspektrometer wurde deutlich, dass diese Pigmente in höheren Konzentrationen im Rotwein vorliegen als bisher publiziert. Es zeigte sich außerdem, dass bis zu 50 % der durch den Sauerstoff bewirkten Abnahme von Anthocyanen und Flavanolen auf die Bildung ethyliden-verbrückter Di- und Trimere, sowie Vitisin B zurückführen lassen. Heute werden in der Weinbereitung häufig Edelstahltanks eingesetzt, bei denen es, anders als in Holzfässern, kaum zu Sauerstoffeinträgen kommt. Eine Farbstabilisierung kann somit nicht stattfinden. Dem Rotwein können stattdessen durch das Verfahren der Mikrooxygenierung geringe Mengen Sauerstoff kontrolliert zugesetzt werden. Bei manchen Weinen führt dies jedoch zu einer verringerten Farbintensität statt zu einer Farbvertiefung. Anhand der insgesamt 21 im Rahmen dieser Arbeit untersuchten Weine zeigte sich, dass Sauerstoff nur dann zu einer intensiveren Weinfarbe führt, wenn das Verhältnis von Tanninen zu Anthocyanen (TAV) unter einem Wert von 3 lag. Die Zunahme der Farbintensität war außerdem negativ mit den spektralphotometrisch zu bestimmenden kleinen (SPP) und großen polymeren Pigmenten (LPP) korreliert, sodass Sauerstoff nur bei geringen Konzentrationen dieser Pigmente zu höheren Farbintensitäten führte. Zudem wurde während der Mikrooxygenierung keine weitere Intensivierung der Weinfarbe erzielt, wenn der Gehalt der LPP den der SPP überstieg. Da LPP aufgrund ihrer Molekülgröße auch eine geringere Löslichkeit aufweisen, sollte ihre übermäßige Bildung vermieden werden. Die Bestimmung von TAV, SPP und LPP erlaubt es somit, die Wirkung von Sauerstoff auf die Weinfarbe vor der Anwendung der Mikrooxygenierung einschätzen und den Sauerstoffzusatz zu beenden, wenn aufgrund der analytischen Daten eine weitere Steigerung der Farbintensität nicht zu erwarten ist. In einem weiteren Teil der Arbeit wurde untersucht, wie sich die Mikrooxygenierung auf die Lagerfähigkeit der Rotweine auswirkt, da Sauerstoff zu einer beschleunigten Reifung führen kann. Dabei zeigte sich, dass die Farbe des mikrooxygenierten Weines auch nach einer 12-monatigen Flaschenlagerung noch stabiler war als in der entsprechenden Kontrollvariante und der Effekt damit nachhaltig. In Geruch und Geschmack unterschied sich der mikrooxygenierte Wein hingegen nicht von der Kontrolle. Mikrooxygenierte Weine sind damit ebenso lagerfähig, wie ohne Sauerstoffzugabe erzeugte Weine.
-
Untersuchungen zur Acrylamid- und Acrolein-Exposition mittels Lebensmittel- und Humanbiomonitoring (2018)
- Die vorliegende Arbeit beschäftigt sich mit den hitzeinduzierten Lebensmittelkontaminanten Acrylamid und Acrolein. Acrylamid entsteht vorwiegend im Rahmen der Maillard-Reaktion beim Erhitzen von Lebensmitteln aus reduzierenden Zuckern und Aminosäuren (Mottram et al., 2002), wohingegen eine thermisch induzierte Acrolein-Bildung bisher vor allem in Fetten und Ölen beschrieben wurde (Ewert et al., 2014). Sowohl für Acrylamid als auch für Acrolein sind toxische Wirkungen nachgewiesen, sodass eine Expositionsabschätzung nötig ist, um eine Risikobewertung vornehmen zu können. Zur Abschätzung der Acrylamid-Exposition empfahl die European Food Safety Authority (EFSA) die Durchführung von Duplikatstudien, bei denen eine Bestimmung der Acrylamid-Gehalte in den verzehrfertigen Mahlzeiten (Duplikaten) erfolgen sollte, um genauere Informationen zu den Acrylamid-Gehalten von im Haushalt zubereiteten Lebensmitteln zu erhalten. Eine Analyse von Acrylamid-Metaboliten im Urin der Probanden der Duplikatstudien sollte zur Validierung der Biomarker erfolgen (EFSA, 2015). Eine entsprechend konzipierte neuntägige Humanstudie (I) wurde mit 14 Probanden unter Vorgabe eines Ernährungsplans in einer kontrollierten Umgebung durchgeführt. Die Auswertung dieser Studie erfolgte im Rahmen dieser Arbeit und ermöglichte es die Acrylamid-assoziierten Mercaptursäuren N-Acetyl-S-(2-carbamoylethyl)-L-cystein (AAMA) und N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cystein (GAMA) als Biomarker der alimentären Acrylamid-Exposition zu validieren. Zusätzlich gab die Humanstudie Hinweise auf das Vorliegen eines Basislevels der AAMA- und GAMA-Ausscheidung, welches möglicherweise auf einer endogenen Acrylamid-Bildung beruhte. Ein weiterer Schwerpunkt dieser Arbeit stellte die Bestimmung der Acrolein-assoziierten Mercaptursäuren N-Acetyl-S-(3-hydroxypropyl)-L-cystein (HPMA) und N-Acetyl-S-(2-carboxyethyl)-L-cystein (CEMA) im Urin der Probanden der Humanstudie I sowie im Urin der Probanden einer weiteren Humanstudie (II) dar. Die Ausscheidung dieser Biomarker der Acrolein-Exposition wurde im Zusammenhang mit der Aufnahme von hocherhitzten Lebensmitteln betrachtet. Bei Humanstudie II handelte es sich um eine Studie, die mit Gemischtköstlern (n = 10) und Veganern (n = 10) über einen Zeitraum von zehn Tagen durchgeführt wurde. Anders als in Humanstudie I behielten die Probanden während des Studienzeitraums ihre Lebens- und Ernährungsgewohnheiten bei. Es zeigte sich bei Humanstudie I sowie Humanstudie II kein Zusammenhang zwischen der Ausscheidung der Acrolein-assoziierten Mercaptursäuren HPMA und CEMA und der Aufnahme von hocherhitzten Lebensmitteln. Unter kontrollierten Bedingungen (Humanstudie I) wurde eine konstante HPMA- und CEMA-Ausscheidung (Basislevel) beobachtet, wohingegen unter free living Bedingungen (Humanstudie II) zum Teil eine deutlich höhere HPMA- und CEMA-Ausscheidung nachgewiesen wurde. Dies legte den Einfluss einer nicht-alimentären exogenen Acrolein-Exposition auf die HPMA- und CEMA-Ausscheidung nahe.
-
Pilotstudie zur Bioverfügbarkeit und biologischen Aktivität anthocyanreicher Heidelbeerextrakte in verkapselter und unverkapselter Form im Menschen (2018)
- In der Bevölkerung steigt mit zunehmendem Alter die Inzidenz chronischer Erkrankungen. Eine häufig diskutierte Ursache chronischer Erkrankungen ist oxidativer Stress. Dieser entsteht im Körper, wenn es zu einem Ungleichgewicht zwischen der Bildung und Inaktivierung von sogenannten reaktiven Sauerstoffspezies (ROS) kommt. Diesem Ungleichgewicht können endogene Faktoren (z.B. körpereigenes Glutathion (GSH)) und exogene Antioxidantien (z.B. Flavonoide) entgegenwirken. Epidemiologische Daten zeigen, dass eine Ernährung mit einem hohen Anteil an Flavonoiden präventive Eigenschaften zeigt und mit einem inversen Effekt bezüglich des Risikos chronischer Krankheiten korreliert. Beerenfrüchte (vor allem Wildheidelbeeren) stellen eine wichtige Quelle an diesen Flavonoiden dar. Für die Wildheidelbeere werden neben anderen Polyphenolen hauptsächlich die Anthocyane für deren Wirkung verantwortlich gemacht. Vor allem antioxidative und antiinflammatorische Eigenschaften von Anthocyanen werden derzeit diskutiert. Der Nachteil von Anthocyanen im Vergleich zu anderen Polyphenolen resultiert allerdings aus deren geringen Bioverfügbarkeit. In vielen Studien lag die Bioverfügbarkeit von verzehrten Anthocyanen im Urin meist unter 1%. Ein Grund für die geringe Aufnahme von Anthocyanen ist deren limitierende Stabilität. Im Darm, welcher als Hauptresorptionsort für Anthocyane gilt, liegt ein Milieu von pH 6-8 vor. Unter diesen pH-Bedingungen sind die Strukturen der Anthocyane nur begrenzt stabil. Daraus begründete sich in der Vergangenheit unter anderem das Forschungsziel, Anthocyane aus Heidelbeerextrakt (HBE) mit Hilfe verschiedener Verkapselungstechniken während der Darmpassage zu stabilisieren und gezielt am Wirkort freizusetzten (DFG/AiF-Cluster 1, 2008-2011). Die effektivsten Verkapselungstechniken basierten dabei auf Molkenprotein- und Pektinbasis. In vitro konnten durch die Verkapselung im Vergleich zum unverkapselten Extrakt höhere Anthocyankonzentrationen im (simulierten) Dünndarmmilieu erreicht werden. Außerdem zeigte sich in vitro keine Verringerung der biologischen Aktivität (ROS, DNA-Strangbrüche, GSH) durch die Verkapselung. Ziel war es, die bisherigen in vitro Ergebnisse zur biologischen Aktivität des HBE (unverkapselt und verkapselt) und der Bioverfügbarkeit der Anthocyane aus dem HBE bzw. Kapselmaterial auf die in vivo Situation zu übertragen und zu verifizieren. Die zentralen Fragen waren, in welchem Ausmaß Anthocyane aus HBE, die Bioaktivität beeinflussen können, unverändert in den Dickdarm gelangen, welche Rolle Prozesse der Dickdarmmikrobiota spielen und inwieweit dies durch Stabilisierungs-(Verkapselungs-)Techniken moduliert werden kann. Der Lösungsweg für diese Fragestellungen wurde durch eine humane Pilotstudie an Probanden realisiert. Welchen Einfluss der Darm bezüglich der Bioaktivität und Bioverfügbarkeit von HBE besitzt, kann anhand von Probanden mit intaktem Gastrointestinaltrakt (GIT) nur limitierend erfasst werden. Aus diesem Grund wurde die Studie zum einen mit Probanden, die ein Stoma am terminalen Ileum besitzen und zum anderen analog mit Kontrollprobanden mit intaktem Kolon durchgeführt. Die Pilotstudie wurde 2011 am Universitätsklinikum Würzburg durchgeführt und unterteilte sich in zwei Abschnitte. Dabei erfolgte während Teil I die Verabreichung von Heidelbeerextrakt (HBE) und während Teil II die Verabreichung von HBE-beladenen Molkeproteinkapseln (hergestellt durch U. Kulozik, TU München) und HBE-beladenen Citruspektinkapseln (hergestellt durch K. Schwarz, Univ. Kiel), jeweils mit äquimolaren Anthocyankonzentrationen. Durchgeführt wurde die Pilotstudie mit Probanden mit intaktem Gastrointestinaltrakt (mit Kolon) und Ileostomaprobanden (ohne Kolon). Während der Studie wurden von allen Probanden Blut- und Urinproben und von den Ileostomieprobanden zusätzlich Ileostomabeutel gesammelt. Durch den Vergleich der beiden Probandengruppen konnte somit erfasst werden, welchen Einfluss der Dickdarm auf die Bioverfügbarkeit und biologische Aktivität besitzt und inwieweit im Dickdarm gebildete Metabolite für biologische Wirkungen verantwortlich sind. Nach Heidelbeerextraktverzehr ergaben sich bei Probanden mit intaktem GIT im Vergleich zu Ileostomaprobanden höhere Gehalte an Anthocyanen (Urin 44% und Plasma 79%) und Abbauprodukten (Urin 75% und Plasma 100%). Durch Molkeproteinverkapselung (MPK) und Citruspektinverkapselung (CPK) wurden im Vergleich zum HBE die Gehalte in Dünndarmflüssigkeiten, Urin und Plasma der Probanden moduliert. Die Ausscheidungsmengen über den Urin zeigen, dass die Molkeproteinverkapselung die systemische Konzentration und die Kurzzeitbioverfügbarkeit der Anthocyane erhöhen kann. Nach Citruspektinverkapselung erfolgte eine Modulation und Stabilisierung der intestinalen Anthocyankonzentrationen lokalisiert am Ende des Dünndarms. Die Erfassung der DNA-Schäden zeigte eine tendenzielle Abnahme der DNA-Strangbrüche in den Blutzellen beider Probandengruppen während der Studie nach unverkapseltem HBE-Verzehr. Die stärksten Effekte der Reduzierung oxidativer DNA-Schäden (mit FPG-Behandlung) wurden nach Verzehr des citruspektinverkapselten Extraktes (CPK) in beiden Probandengruppen detektiert. Nach MPK-Verzehr konnten hingegen nur geringe Effekte beobachtet werden. Der GSH-Status der Probanden wurde innerhalb der Studie nicht beeinflusst. Die Ergebnisse dieser Studie zeigen, dass die Verkapselung von Anthocyanen deren Bioverfügbarkeit im Vergleich zu nichtverkapselten Anthocyanen modulieren kann, wobei die Bioverfügbarkeit der Anthocyane im Allgemeinen während dieser Studie sehr gering war. Weiterhin wurden Effekte zur antioxidativen Wirksamkeit der verwendeten Extraktsysteme beobachtet. Der Dünndarmmetabolit Phloroglucinolaldehyd wurde als potentielle Wirkkomponente identifiziert (Forschungsstelle II, Wien). Die vorliegenden Ergebnisse werden anhand der Betrachtung der DNA-Schädigung und der ermittelten Plasmakonzentrationen aber nicht vollständig erklärt. Weitere Anthocyanmetabolite, die im Rahmen dieser Arbeit nicht untersucht wurden, können für die Wirkung des Extraktes verantwortlich sein.
-
Stoffliche Nutzung von Kohlenstoffdioxid als C1-Baustein und Einsatz von Wasserstoff als umweltfreundliches Reduktionsmittel für Carbonsäuren (2018)
- Im Rahmen dieser Doktorarbeit wurden neue katalytische Methoden zur Aktivierung von Kohlenstoffdioxid und dessen Derivate entwickelt, die eine abfallfreie Nutzung von CO2 als C1-Baustein in C-C-Bindungsknüpfungen erlauben. Die Entwicklung einer abfallfreien Hydroxymethylierung terminaler Alkine demonstriert ein innovatives Konzept zur nachhaltigen Nutzung von CO2 als C1-Baustein, ohne die damit einhergehende Salzabfallbildung konventioneller Verfahren. Hierbei wurden terminale Alkine in einem ersten Schritt in Gegenwart der milden Aminbase 2,2,6,6-Tetramethylpiperidin katalytisch C-H-carboxyliert. Durch eine anschließende katalytische Hydrierung der Ammoniumpropiolate zu den korrespondierenden Alkoholen unter Freisetzung der eingesetzten Aminbase stellt Wasser das einzige Abfallprodukt dieser Umsetzung dar. Die industrielle Anwendbarkeit dieses neuen Konzepts wurde in einem Kooperationsprojekt mit der BASF SE durch die Entwicklung eines neuen, nachhaltigen Verfahrens zur Darstellung von 1,4-Butandiol aus Acetylen und CO2 gezeigt. Essentieller Schritt bei diesem Verfahren ist die Veresterung des Dikaliumsuccinats unter CO2-Druck mit Methanol, wobei je zwei Äquivalente KHCO3 und HK2PO4 anfallen. Durch thermische Behandlung lässt sich aus diesem Gemisch die ursprüngliche Base K3PO4 regenerieren, sodass wiederum kein Salzabfall anfällt. Darüber hinaus wurde durch die Entwicklung einer hocheffizienten Methode zur stereoselektiven Darstellung biologisch aktiver (E)-beta-Alkoxyacrylate ausgehend von terminalen Alkinen und Dialkylcarbonaten die nachhaltige Nutzung eines Kohlensäurederivats demonstriert. Diese Alkoxid-katalysierte Transformation zeichnet sich durch eine vollständige Atomeffizienz und einen hervorragenden E-Faktor von 5.2 aus. Des Weiteren konnte ein Protokoll zur Darstellung langkettiger unsymmetrischer Alkylether mittels einer reduktiven Veretherung aus nachwachsenden Rohstoffen ausgearbeitet werden. Die entwickelte Methode erlaubt auch Umsetzungen von Fettsäure-/ester-Gemischen wie Rapsölmethylester (RME) oder Tallöl. Hierdurch lassen sich komplexe Stoffgemische aus nachwachsenden Rohstoffen in einheitliche Produkte überführen. Im letzten Teilprojekt dieser Arbeit wurde eine effiziente und minutenschnelle Methode zur Spaltung von 8-Aminochinolinamiden (Daugulis-Amide) unter Mikrowellen-Bedingungen entwickelt. In Kombination mit der vorab von Herrn Katayev und Herrn Pfister entwickelten Methode zur ortho-C-H-Nitrierung aromatischer 8-Aminochinolinamide erlaubt diese den Einsatz von 8-Aminochinolin (Q-NH2) als temporäre dirigierende Schutzgruppe.
-
A Mechanistic Insight into the Nickel-Catalyzed Homocoupling Reaction of Terminal Alkynes (2018)
- 1,3-Diynes are frequently found as an important structural motif in natural products, pharmaceuticals and bioactive compounds, electronic and optical materials and supramolecular molecules. Copper and palladium complexes are widely used to prepare 1,3-diynes by homocoupling of terminal alkynes; albeit the potential of nickel complexes towards the same is essentially unexplored. Although a detailed study on the reported nickel-acetylene chemistry has not been carried out, a generalized mechanism featuring a nickel(II)/nickel(0) catalytic cycle has been proposed. In the present work, a detailed mechanistic aspect of the nickel-mediated homocoupling reaction of terminal alkynes is investigated through the isolation and/or characterization of key intermediates from both the stoichiometric and the catalytic reactions. A nickel(II) complex [Ni(L-N4Me2)(MeCN)2](ClO4)2 (1) containing a tetradentate N,N′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane (L-N4Me2) as ligand was used as catalyst for homocoupling of terminal alkynes by employing oxygen as oxidant at room temperature. A series of dinuclear nickel(I) complexes bridged by a 1,3-diyne ligand have been isolated from stoichiometric reaction between [Ni(L-N4Me2)(MeCN)2](ClO4)2 (1) and lithium acetylides. The dinuclear nickel(I)-diyne complexes [{Ni(L-N4Me2)}2(RC4R)](ClO4)2 (2) were well characterized by X-ray crystal structures, various spectroscopic methods, SQUID and DFT calculation. The complexes not only represent as a key intermediate in aforesaid catalytic reaction, but also describe the first structurally characterized dinuclear nickel(I)-diyne complexes. In addition, radical trapping and low temperature UV-Vis-NIR experiments in the formation of the dinuclear nickel(I)-diyne confirm that the reactions occurring during the reduction of nickel(II) to nickel(I) and C-C bond formation of 1,3-diyne follow non-radical concerted mechanism. Furthermore, spectroscopic investigation on the reactivity of the dinuclear nickel(I)-diyne complex towards molecular oxygen confirmed the formation of a mononuclear nickel(I)-diyne species [Ni(L-N4Me2)(RC4R)]+ (4) and a mononuclear nickel(III)-peroxo species [Ni(L-N4Me2)(O2)]+ (5) which were converted to free 1,3-diyne and an unstable dinuclear nickel(II) species [{Ni(L-N4Me2)}2(O2)]2+ (6). A mononuclear nickel(I)-alkyne complex [Ni(L-N4Me2)(PhC2Ph)](ClO4).MeOH (3) and the mononuclear nickel(III)-peroxo species [Ni(L-N4Me2)(O2)]+ (5) were isolated/generated and characterized to confirm the formulation of aforementioned mononuclear nickel(I)-diyne and mononuclear nickel(III)-peroxo species. Spectroscopic experiments on the catalytic reaction mixture also confirm the presence of aforesaid intermediates. Results of both stoichiometric and catalytic reactions suggested an intriguing mechanism involving nickel(II)/nickel(I)/nickel(III) oxidation states in contrast to the reported nickel(II)/nickel(0) catalytic cycle. These findings are expected to open a new paradigm towards nickel-catalyzed organic transformations.
-
Untersuchungen zur geöffneten und geschlossenen Form des Maltose bindenden Proteins / Radikalnachweis unter Verwendung einer neuartigen Spin trap (2018)
- Ziel im ersten Teil dieser Arbeit ist die Untersuchung der offenen und geschlossenen Konformation des Maltose bindende Proteins (MBP) im nativen und Molten-Globule-(MG)-Zustand mit Hilfe der ESR-Spektroskopie. Die komplexen Mechanismen der Proteinfaltung und Proteindynamik bilden schon seit Langem ein wichtiges Forschungsziel in der Untersuchung biochemischer Prozesse und der Enzymkinetik. MBP bietet sich in diesem Zusammenhang als geeignetes Forschungsobjekt an, da die Konformationsunterschiede des MBP gut erkennbar sind und sich der MG-Zustand genügend lang für Untersuchungen stabilisieren lässt. Die Fähigkeit zur reversiblen Faltung ist für ein Protein dieser Größe ebenso wie die Ausbildung eines hoch geordneten MG-Zustands mit hoher Affinität zu seinem Zielsubstrat ungewöhnlich. Der besondere Vorteil der ESR-Spektroskopie ist die geringe Störung der Messung durch das Messsystem, was die Möglichkeit liefert, das Protein unter nativen Bedingungen, selbst innerhalb von Membranen oder biologischen Systemen, zu untersuchen. Die in dieser Arbeit verwendete site-directed spin-labeling (SDSL)-Methode, bei der eine kovalente Bindung von Nitroxid-Spinlabel (NSL) an das Protein eingesetzt wird, löst kaum Störungen im System aus und schränkt die Flexibilität der Proteine kaum ein. Als Grundlage der ESR-spektroskopischen Untersuchungen dienen im Haus durchgeführte cw-ESR-Messungen und DQC-Messungen, welche bei unserem Kooperationspartner Prof. J. Freed im ACERT Institut, Ithaca, New York, durchgeführt wurden. Die double quantum coherence (DQC)-ESR beschreibt eine spezifische Messmethode zur Analyse der dipolaren Elektron-Elektron-Wechselwirkungen durch Isolierung des Elektron- Spin-Echos und somit der Abstandsbestimmung zweier NSL unter Verwendung einer spezifischen Pulsabfolge. Der größte Vorteil dieser Methode ist die Minimierung störender Hintergrundsignale, ein geringes Signal-Rausch-Verhältnis und die mögliche Bestimmung von Abständen zwischen 10 und 80 °A. Über Molekulare-Dynamik-(MD)-Simulation lässt sich ein guter Einblick in die Struktur von Proteinen gewinnen und ein Model der gelabelten Proteine entwickeln. Die These, dass MBP bereits ohne seinen Liganden beide Konformationen einnimmt, kann durch die DQC-Messungen und die Korrelation mit der MD-Simulation bestätigt werden. Weiterhin kann nachgewiesen werden dass eine Grundstruktur von MBP und ein funktionell ausgebildetes aktives Zentrum bereits im MG-Zustand vorliegt. Im zweiten Teil dieser Arbeit wird die Möglichkeit untersucht freie Radikale in verschiedenen Systemen, auch innerhalb von Zellen, mittels ESR-Spektroskopie zu detektieren und zu analysieren. Die Zielsetzung dabei ist es, die Radikalbildung bei verschiedenen medizinischen Behandlungen zu untersuchen. Die Lebensdauer einer Zelle wird durch das Zusammenspiel von freien Radikalen mit Antioxidantien, Proteinen, Cofaktoren und sonstigen Zellbestandteilen bestimmt. Durch bessere Kenntnis dieses Zusammenspiels können große Fortschritte in Medizin und Gesundheitsvorsorge erreicht werden. Sollte die Bildung der Sauerstoffradikale das natürliche antioxidative Potential der Zelle überschreiten, spricht man von dem “oxidativem Stress” der Zelle. Zu den möglichen Folgen des oxidativen Stresses gehört die Schädigung aller zellulären und extrazellulären Makromoleküle bis hin zur Apoptose, also dem Absterben der Zelle. Die primären Folgen sind vor allem die Lipidperoxidation, die Proteinoxidation und die Schädigung der DNA. Durch die Verwendung von ESR-spektroskopischen Methoden ist es möglich Untersuchungen innerhalb lebender Zellen durchzuführen. Zur Detektion der Radikale wird dabei ein Radikalfänger (Spin trap) eingesetzt, welcher a priori kein ESR-Signal liefert, sondern erst durch den Kontakt mit dem freien Radikal ein ungepaartes Elektron und somit ein ESR-Signal aufweist. Die Verbindung 2-Ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrol-1-oxid (EMPO) ist ein Derivat des DMPO, in welchem die Nitroxidgruppe zusätzlich stabilisiert wird. Hierdurch kommt es zu einer deutlich längeren Lebensdauer der Spin-Addukte und einer besseren Auflösung der ESR-Messung. Die entstehenden Signale der einzelnen EMPO-Addukte lassen sich mit geeigneten Methoden simulieren. Dies ermöglicht die Analyse der entstandenen Radikale. Während unter der Strahlenbelastung von CT- und MRT-Untersuchungen keine Radikalbildung in den Proben festgestellt werden kann, liefert die Strahlentherapie mittels Linearbeschleuniger ein breites Spektrum gebildeter Radikale. Die Ausbildung dieser Radikale zeigt sich dabei von verschiedenen Faktoren abhängig. So zeigt sich die Ausbildung von H-, OH- und OOH-Addukten durch Luftsauerstoff begünstigt, die Zugabe von NaCl fördert die Ausbildung von Wasserstoffradikalen und organische Pufferbestandteile, wie z.B. Tris oder HEPES, führen zur erhöhten C-Addukt- Bildung.
-
Koordinationschemie gemischter N-heterocyclischer Carben-Phosphanliganden (2018)
- Im Rahmen dieser Arbeit wurde zunächst ein modulares, breit anwendbares Syntheseprotokoll zur Darstellung gemischter NHC-Phosphanliganden etabliert, das Zugang für zahlreiche PC- und PCP-Imidazoliumsalze gewährte. Modifikationen der Ligandstruktur, beispielsweise durch Salzmetathese oder Oxidation der Phosphanfunktion, konnten erfolgreich umgesetzt werden. In der Folge wurde der Versuch unternommen, mehrere Metalle der Gruppen IX – XI an die entsprechenden PC- und PCP-Systeme unter Bildung multimetallischer Komplexe zu koordinieren. Dafür kamen verschiedene Methoden zur Generierung von NHC-Komplexen zum Einsatz: Neben der eingängig bekannten Reaktion von mit externer Base deprotonierten Carbenen mit den jeweiligen Metallvorstufen auch Umsetzungen von Ag(I)- und Cu(I)-NHC-Komplexen als Transmetallierungsagentien oder Nickelocen als Precursor mit Cp- als interner Base. Hierbei wurden zahlreiche monometallische Verbindungen erhalten, bei denen der NHC-Phosphanligand chelatisierend an das jeweilige Zentralmetall bindet. Die Resultate dieser Experimente führten zu der Idee, neben der P,C-Bindungseinheit des Liganden eine weitere Donorstelle in die Struktur der Imidazoliumsalze zu integrieren. Diese sollte insbesondere härtere, polarisierte Übergangsmetallionen koordinieren können. Zur Umsetzung dieses Vorhabens wurden ausgehend von einem Pyridinyl-, Phenanthrolin- und Amino-N,N-diacetat-Substitutionsmuster drei neuartige gemischte NHC-Phosphanliganden entwickelt. Abschließend wurde die Reaktion von alkyl- und arylfunktionalisierten PC-Imida-zoliumsalzen mit dem trimeren Metallcarbonylen der Elemente Eisen und Ruthenium untersucht. Während bei der Eisen(0)-Verbindung die Bildung eines Chelatkomplexes mit dem Eisenzentrum in der Oxidationsstufe 0 beobachtbar war, konnte bei dem korrespondierenden Ru(0)-Precursor ausschließlich oxidative Addition des Liganden an das Ruthenium festgestellt werden. In Gegenwart einer Base ist es möglich, auch im Fall von Ru3(CO)12 einen Ru(0)-Komplex darzustellen, der nachfolgend durch Umsetzung mit Methyliodid zu einer Ruthenium(II)-Verbindung oxidiert werden konnte.
-
Synthese, Charakterisierung und Untersuchung katalytischer Eigenschaften von ternären intermetallischen Verbindungen (2017)
- In den vergangenen Jahren hat sich der Bereich der Nanotechnologie zu einem fachübergreifenden Gebiet entwickelt. Nanopartikel besitzen aufgrund ihrer Größe und einem hohen Oberfläche zu Volumen Verhältnis besondere chemische und physikalische Eigenschaften, die sich von denen größerer Partikel unterscheiden. Das Forschungsinteresse der letzten Zeit liegt insbesondere auf deren magnetischem Charakter. Damit verbunden sind auch vielseitige industrielle Einsatzmöglichkeiten. Magnetische, nanostrukturierte Materialien werden in Bereichen wie der Chemie, der Physik sowie der Biomedizin untersucht und angewendet. In der Chemie werden die Herstellung und die Untersuchung der katalytischen Eigenschaften von Nanopartikeln intensiv erforscht. Zu den zahlreichen Synthesemethoden von nanoskaligen Partikeln zählen zum Beispiel die thermische Zersetzung, die Mitfällung oder die Hydrothermalsynthese. Die katalytische Aktivität und die Selektivität dieser Materialien werden von der Partikelgröße, der Morphologie und der Anzahl an aktiven Oberflächenzentren beeinflusst. Die Entwicklung von stabilen Katalysatoren ist entscheidend für viele Anwendungen. Zur Stabilisierung und zum Schutz gegen Oxidation und Erosion werden oberflächenaktive Substanzen (z. B. Polymere, Tenside), anorganische oder poröse Trägermaterialien (Siliciumdioxid, Zeolithe) eingesetzt. Ein wichtiges Ziel für nachhaltige Prozesse sind leicht abtrennbare und wiederzuverwendende Nanopartikel. Dies ermöglichen zum Beispiel Kern-Schale-Katalysatoren, die eine katalytisch aktive Schale (Rh, Pt, Au) und einen magnetischen Kern aus Fe, Co, Ni besitzen. Verschiedene magnetische Nanopartikel wurden in zahlreichen Reaktionen (z. B. C-C-Kupplungen, Hydrierung von Olefinen, Hydroformylierung) getestet und zeichneten sich als katalytisch aktive und stabile Katalysatoren aus. Im Bereich der Physik werden die magnetischen und die elektronischen Eigenschaften der Nanopartikel untersucht. Die magnetischen Einheiten werden im Forschungsgebiet der Informationstechnologie als Nanobauteile in Speichermedien eingesetzt. Die Verwendung basiert auf der Nutzung des ferromagnetischen Verhaltens einzelner Nanomaterialien in Speichereinheiten. Bei der Herstellung werden die elektrischen, optischen und magnetischen Eigenschaften der Nanopartikel beeinflusst. So tritt mit abnehmender Partikelgröße ein Übergang vom Ferromagnetismus zum Paramagnetismus auf. Außerdem beginnt die Magnetisierungsrichtung zeitlich und räumlich zu fluktuieren und die magnetisch gespeicherten Informationen gehen verloren. Die Miniaturisierung der Komponenten (z. B. Computerchips) bei gleichzeitiger Vergrößerung der Datenspeicherdichte ist sehr wichtig. Einer der vielversprechenden Zusammensetzungen dafür sind FePt-Partikel, die auch nach Entfernen des externen elektrischen Feldes ihre Magnetisierungsrichtung nicht sofort verlieren. Im biomedizinischen Bereich eröffnen magnetische Nanopartikel ebenfalls neue Möglichkeiten. Sie werden als spezielle Kontrastmittel für die bildgebenden Verfahren der Magnetresonanztomografie genutzt. Außerdem können funktionalisierte Partikel als Transportmittel für Wirkstoffe bei einer Krebstherapie eingesetzt werden. Eine gezielte Positionierung des mit Wirkstoff modifizierten magnetischen Nanopartikels im Körper ist dabei möglich. Die Bioverträglichkeit der Materialien wird durch eine Verkapselung der Nanopartikel mit biologisch nicht belastenden, nicht toxischen Substanzen (z. B. Polyvinylalkohol, Polyethylenglykol, Stärke oder Dextran) erreicht. Eine Materialklasse, die Wissenschaft und Technologie vereinigt und die in den letzten Jahren immer mehr an Interesse gewonnen hat, stellen die Heusler-Verbindungen dar. Dies sind ternäre intermetallische Zusammensetzungen der Form X2YZ, die im Jahr 1903 von Fritz Heusler entdeckt und beschrieben wurden. X und Y stehen meistens für Übergangmetalle, wohingegen Z häufig ein Element der III. – V. Hauptgruppe darstellt. Eine Kombination der unterschiedlichen charakteristischen Merkmale (halbmetallischer Charakter, hohes magnetisches Moment, hohe Curie-Temperatur) in einer Verbindung ermöglicht vielseitige Anwendungen dieser Materialien. Die Eigenschaften der Heusler-Verbindungen können durch die Veränderung der Zusammensetzung (Elementenaustausch) oder durch die Variation der Stöchiometrie der kombinierten Elemente beeinflusst werden. Unter den Heusler-Materialien sind halbmetallische Ferromagneten, ferrimagnetische Zusammensetzungen, Halbleiter und Supraleiter vertreten. Die X2YZ-Kompositionen werden industriell als magneto-optische Materialien, als Formgedächtnislegierungen, in thermoelektrischen Elementen oder als topologische Isolatoren verwendet. Das Augenmerk der Spintronik liegt bei der hohen Spinpolarisation der Heusler-Verbindungen. Effiziente Bauelemente mit einem hohen Riesenmagnetwiderstand oder einem hohen Tunnelmagnetwiderstand werden in Festplattenleseköpfen von Computern und in magnetischen Sensoren eingebaut. Mit den ersten katalytischen Experimenten an ternären intermetallischen Materialien von Hedvall und Hedin im Jahr 1935 wurde auf ein weiteres Forschungs- und Einsatzbereich für Heusler-Verbindungen hingewiesen.
-
Reaktive Pentaisopropylcyclopentadienyl-Eisenkomplexe (2015)
- Darstellung und Reduktion von reaktiven Cyclopentadienyl-Eisenhalbsandwichkomplexen, sowie deren Reaktivität gegenüber Aminen, Phosphanen und Wasser
-
Cyclopeptid-basierte Rezeptoren zur Erkennung und Detektion von Anionen in Wasser (2017)
- Das Feld der Anionenerkennung ist ein stets wachsendes Forschungsgebiet, auch weil eine Vielzahl biochemischer Prozesse mit negativ geladenen Substraten und Co-Faktoren verbunden sind. Da solche Prozesse in wässrigem Milieu stattfinden, sind Verbindungen von besonderem Interesse, die Anionen in Wasser zu binden vermögen. Geeignete Rezeptoren zur Erkennung von Anionen sind die im Arbeitskreis Kubik entwickelten Cyclopeptide (CPs) und Bis(cyclopeptide) (BCPs). Da die Anionenaffinität der in der Vergangenheit untersuchten BCPs nur in wenigen ausgesuchten Lösungsmittelgemischen und nie in reinem Wasser charakterisiert wurde, wurde im ersten Teil meiner Promotion ein BCP-Derivat entwickelt, mit dem kalorimetrische Bindungsstudien in einem breiten Spektrum von Lösungsmittelgemischen möglich waren. Die hierbei erhaltenen thermodynamischen Daten sollten Informationen über die Prinzipien geben, die der Anionenaffinität dieser Verbindungen zugrunde liegen. Es wurde zunächst die Synthese des bereits in meiner Diplomarbeit untersuchten BCP1 optimiert, dessen Wasserlöslichkeit durch insgesamt sechs Triethylenglycolreste vermittelt wird. Dieser Rezeptor erwies sich nach geeigneter Isolation ausreichend löslich, um Lösungen in Wasser mit einer Konzentration von bis zu 0.25 mM herzustellen. Es wurde ebenfalls das BCP2 mit einer zusätzlichen solubilisierenden Gruppe im Vergleich zu BCP1 synthetisiert, welches in bis zu 10 mM Konzentrationen in Wasser löslich ist. Mit beiden Rezeptoren wurden in Wasser, verschiedenen wässrigen Lösungsmittelgemischen und reinen organischen Lösungsmitteln Bindungsstudien durchgeführt, wodurch quantitative und qualitative Einblicke erhalten wurden, wie die Solvatisierung des Anions und des Rezeptors in den verschiedenen Lösungsmitteln die Anionenkomplexierung beeinflussen. Im zweiten Teil dieser Arbeit wurde an der Entwicklung von CP-basierten chemischen Sensoren und Sonden gearbeitet, mit denen Anionen in Lösung detektiert werden können. In diesem Zusammenhang wurden Synthesen für zwei CPs entwickelt, die auf unterschiedliche Art auf Goldelektroden immobilisiert werden können. Diese Elektroden sollen für die elektrochemische Anionendetektion dienen. Im Bereich chemischer Sonden sollten mit CPs dekorierte Goldnanopartikel (Au-NPs) dargestellt werden, die nach Anionenzugabe agglomerieren. Die damit verbundene Farbveränderung der Lösung soll einen Anionennachweis mit bloßem Auge gestatten. Es wurden zwei CP-Grundstrukturen dargestellt, welche als anionenerkennende Liganden auf Au-NPs dienen können. Ebenfalls wurden erste Au-NPs synthetisiert, die eine Mischung oberflächengebundener inerter und CP-funktionalisierter Liganden enthielten.