### Refine

#### Year of publication

- 2009 (37) (remove)

#### Document Type

- Doctoral Thesis (37) (remove)

#### Language

- English (37) (remove)

#### Keywords

- Algebraische Geometrie (2)
- Datenanalyse (2)
- Extrapolation (2)
- Finanzmathematik (2)
- Visualisierung (2)
- illiquidity (2)
- 17beta-Estradiol (1)
- 3D Gene Expression (1)
- 3D Point Data (1)
- Ableitungsschätzung (1)

#### Faculty / Organisational entity

A series of (oligo)phenthiazines, thiazolium salts and sulfonic acid functionalized organic/inorganic hybrid materials were synthesized. The organic groups were covalently bound on the inorganic surface through reactions of organosilane precursors with TEOS or with the silanol groups of material surface. These synthetic methods are called the co-condensation process and the post grafting. The structures and the textural parameters of the generated hybrid materials were characterized by XRD, N2 adsorption-desorption measurements, SEM and TEM. The incorporations of the organic groups were verified by elemental analysis, thermogravimetric analysis, FT-IR, UV-Vis, EPR, CV, as well as by 13C CP-MAS NMR and 29Si CP-MAS NMR spectroscopy. Introduction of various organic groups endow different phsysical, chemical properties to these hybrid materials. The (oligo)phenothiazines provide a group of novel redox acitive hybrid materials with special electronic and optic properties. The thiazolium salts modified materials were applied as heterogenized organo catalysts for the benzoin condensation and the cross-coupling of aldehydes with acylimines to yield a-amido ketones. The sulfonic acid containing materials can not only be used as Broensted acid catalysts, but also can serve as ion exchangable supports for further modifications and applications.

Elastomers and their various composites, and blends are frequently used as engineering working parts subjected to rolling friction movements. This fact already substantiates the importance of a study addressing the rolling tribological properties of elastomers and their compounds. It is worth noting that until now the research and development works on the friction and wear of rubber materials were mostly focused on abrasion and to lesser extent on sliding type of loading. As the tribological knowledge acquired with various counterparts, excluding rubbers, can hardly be adopted for those with rubbers, there is a substantial need to study the latter. Therefore, the present work was aimed at investigating the rolling friction and wear properties of different kinds of elastomers against steel under unlubricated condition. In the research the rolling friction and wear properties of various rubber materials were studied in home-made rolling ball-on-plate test configurations under dry condition. The materials inspected were ethylene/propylene/diene rubber (EPDM) without and with carbon black (EPDM_CB), hydrogenated acrylonitrile/butadiene rubber (HNBR) without and with carbon black/silica/multiwall carbon nanotube (HNBR_CB/silica/MWCNT), rubber-rubber hybrid (HNBR and fluororubber (HNBR-FKM)) and rubber-thermoplastic blend (HNBR and cyclic butylene terephthalate oligomers (HNBR-CBT)). The dominant wear mechanisms were investigated by scanning electron microscopy (SEM), and analyzed as a function of composition and testing conditions. Differential scanning calorimetry (DSC), dynamic-mechanical thermal analysis (DMTA), atomic force microscopy (AFM), and transmission electron microscopy (TEM) along with other auxiliary measurements, were adopted to determine the phase structure and network-related properties of the rubber systems. The changes of the friction and wear as a function of type and amount of the additives were explored. The friction process of selected rubbers was also modelled by making use of the finite element method (FEM). The results show that incorporation of filler enhanced generally the wear resistance, hardness, stiffness (storage modulus), and apparent crosslinking of the related rubbers (EPDM-, HNBR- and HNBR-FKM based ones), but did not affect their glass transition temperature. Filling of rubbers usually reduced the coefficient of friction (COF). However, the tribological parameters strongly depended also on the test set-up and test duration. High wear loss was noticed for systems showing the occurrence of Schallamach-type wavy pattern. The blends HNBR-FKM and HNBR-CBT were two-phase structured. In HNBR-FKM, the FKM was dispersed in form of large microscaled domains in the HNBR matrix. This phase structure did not change by incorporation of MWCNT. It was established that the MWCNT was preferentially embedded in the HNBR matrix. Blending HNBR with FKM reduced the stiffness and degree of apparent crosslinking of the blend, which was traced to the dilution of the cure recipe with FKM. The coefficient of friction increased with increasing FKM opposed to the expectation. On the other hand, the specific wear rate (Ws) changed marginally with increasing content of FKM. In HNBR-CBT hybrids the HNBR was the matrix, irrespective to the rather high CBT content. Both the partly and mostly polymerized CBT ((p)CBT and pCBT, respectively) in the hybrids worked as active filler and thus increased the stiffness and hardness. The COF and Ws decreased with increasing CBT content. The FEM results in respect to COF achieved on systems possessing very different structures and thus properties (EPDM_30CB, HNBR-FKM 100-100 and HNBR-(p)CBT 100-100, respectively) were in accordance with the experimental results. This verifies that FEM can be properly used to consider the complex viscoelastic behaviour of rubber materials under dry rolling condition.

Modern digital imaging technologies, such as digital microscopy or micro-computed tomography, deliver such large amounts of 2D and 3D-image data that manual processing becomes infeasible. This leads to a need for robust, flexible and automatic image analysis tools in areas such as histology or materials science, where microstructures are being investigated (e.g. cells, fiber systems). General-purpose image processing methods can be used to analyze such microstructures. These methods usually rely on segmentation, i.e., a separation of areas of interest in digital images. As image segmentation algorithms rarely adapt well to changes in the imaging system or to different analysis problems, there is a demand for solutions that can easily be modified to analyze different microstructures, and that are more accurate than existing ones. To address these challenges, this thesis contributes a novel statistical model for objects in images and novel algorithms for the image-based analysis of microstructures. The first contribution is a novel statistical model for the locations of objects (e.g. tumor cells) in images. This model is fully trainable and can therefore be easily adapted to many different image analysis tasks, which is demonstrated by examples from histology and materials science. Using algorithms for fitting this statistical model to images results in a method for locating multiple objects in images that is more accurate and more robust to noise and background clutter than standard methods. On simulated data at high noise levels (peak signal-to-noise ratio below 10 dB), this method achieves detection rates up to 10% above those of a watershed-based alternative algorithm. While objects like tumor cells can be described well by their coordinates in the plane, the analysis of fiber systems in composite materials, for instance, requires a fully three dimensional treatment. Therefore, the second contribution of this thesis is a novel algorithm to determine the local fiber orientation in micro-tomographic reconstructions of fiber-reinforced polymers and other fibrous materials. Using simulated data, it will be demonstrated that the local orientations obtained from this novel method are more robust to noise and fiber overlap than those computed using an established alternative gradient-based algorithm, both in 2D and 3D. The property of robustness to noise of the proposed algorithm can be explained by the fact that a low-pass filter is used to detect local orientations. But even in the absence of noise, depending on fiber curvature and density, the average local 3D-orientation estimate can be about 9° more accurate compared to that alternative gradient-based method. Implementations of that novel orientation estimation method require repeated image filtering using anisotropic Gaussian convolution filters. These filter operations, which other authors have used for adaptive image smoothing, are computationally expensive when using standard implementations. Therefore, the third contribution of this thesis is a novel optimal non-orthogonal separation of the anisotropic Gaussian convolution kernel. This result generalizes a previous one reported elsewhere, and allows for efficient implementations of the corresponding convolution operation in any dimension. In 2D and 3D, these implementations achieve an average performance gain by factors of 3.8 and 3.5, respectively, compared to a fast Fourier transform-based implementation. The contributions made by this thesis represent improvements over state-of-the-art methods, especially in the 2D-analysis of cells in histological resections, and in the 2D and 3D-analysis of fibrous materials.

The thesis at hand deals with the numerical solution of multiscale problems arising in the modeling of processes in fluid and thermo dynamics. Many of these processes, governed by partial differential equations, are relevant in engineering, geoscience, and environmental studies. More precisely, this thesis discusses the efficient numerical computation of effective macroscopic thermal conductivity tensors of high-contrast composite materials. The term "high-contrast" refers to large variations in the conductivities of the constituents of the composite. Additionally, this thesis deals with the numerical solution of Brinkman's equations. This system of equations adequately models viscous flows in (highly) permeable media. It was introduced by Brinkman in 1947 to reduce the deviations between the measurements for flows in such media and the predictions according to Darcy's model.

This thesis deals with 3 important aspects of optimal investment in real-world financial markets: taxes, crashes, and illiquidity. An introductory chapter reviews the portfolio problem in its historical context and motivates the theme of this work: We extend the standard modelling framework to include specific real-world features and evaluate their significance. In the first chapter, we analyze the optimal portfolio problem with capital gains taxes, assuming that taxes are deferred until the end of the investment horizon. The problem is solved with the help of a modification of the classical martingale method. The second chapter is concerned with optimal asset allocation under the threat of a financial market crash. The investor takes a worst-case attitude towards the crash, so her investment objective is to be best off in the most adverse crash scenario. We first survey the existing literature on the worst-case approach to optimal investment and then present in detail the novel martingale approach to worst-case portfolio optimization. The first part of this chapter is based on joint work with Ralf Korn. In the last chapter, we investigate optimal portfolio decisions in the presence of illiquidity. Illiquidity is understood as a period in which it is impossible to trade on financial markets. We use dynamic programming techniques in combination with abstract convergence results to solve the corresponding optimal investment problem. This chapter is based on joint work with Holger Kraft and Peter Diesinger.

The goal of this work is the development and investigation of an interdisciplinary and in itself closed hydrodynamic approach to the simulation of dilute and dense granular flow. The definition of “granular flow” is a nontrivial task in itself. We say that it is either the flow of grains in a vacuum or in a fluid. A grain is an observable piece of a certain material, for example stone when we mean the flow of sand. Choosing a hydrodynamic view on granular flow, we treat the granular material as a fluid. A hydrodynamic model is developed, that describes the process of flowing granular material. This is done through a system of partial differential equations and algebraic relations. This system is derived by the kinetic theory of granular gases which is characterized by inelastic collisions extended with approaches from soil mechanics. Solutions to the system have to be obtained to understand the process. The equations are so difficult to solve that an analytical solution is out of reach. So approximate solutions must be obtained. Hence the next step is the choice or development of a numerical algorithm to obtain approximate solutions of the model. Common to every problem in numerical simulation, these two steps do not lead to a result without implementation of the algorithm. Hence the author attempts to present this work in the following frame, to participate in and contribute to the three areas Physics, Mathematics and Software implementation and approach the simulation of granular flow in a combined and interdisciplinary way. This work is structured as follows. A continuum model for granular flow which covers the regime of fast dilute flow as well as slow dense flow up to vanishing velocity is presented in the first chapter. This model is strongly nonlinear in the dependence of viscosity and other coefficients on the hydrodynamic variables and it is singular because some coefficients diverge towards the maximum packing fraction of grains. Hence the second difficulty, the challenging task of numerically obtaining approximate solutions for this model is faced in the second chapter. In the third chapter we aim at the validation of both the model and the numerical algorithm through numerical experiments and investigations and show their application to industrial problems. There we focus intensively on the shear flow experiment from the experimental and analytical work of Bocquet et al. which serves well to demonstrate the algorithm, all boundary conditions involved and provides a setting for analytical studies to compare our results. The fourth chapter rounds up the work with the implementation of both the model and the numerical algorithm in a software framework for the solution of complex rheology problems developed as part of this thesis.

Knowledge discovery from large and complex collections of today’s scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics. Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of highdimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of highenergy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.

This thesis is devoted to two main topics (accordingly, there are two chapters): In the first chapter, we establish a tropical intersection theory with analogue notions and tools as its algebro-geometric counterpart. This includes tropical cycles, rational functions, intersection products of Cartier divisors and cycles, morphisms, their functors and the projection formula, rational equivalence. The most important features of this theory are the following: - It unifies and simplifies many of the existing results of tropical enumerative geometry, which often contained involved ad-hoc computations. - It is indispensable to formulate and solve further tropical enumerative problems. - It shows deep relations to the intersection theory of toric varieties and connected fields. - The relationship between tropical and classical Gromov-Witten invariants found by Mikhalkin is made plausible from inside tropical geometry. - It is interesting on its own as a subfield of convex geometry. In the second chapter, we study tropical gravitational descendants (i.e. Gromov-Witten invariants with incidence and "Psi-class" factors) and show that many concepts of the classical Gromov-Witten theory such as the famous WDVV equations can be carried over to the tropical world. We use this to extend Mikhalkin's results to a certain class of gravitational descendants, i.e. we show that many of the classical gravitational descendants of P^2 and P^1 x P^1 can be computed by counting tropical curves satisfying certain incidence conditions and with prescribed valences of their vertices. Moreover, the presented theory is not restricted to plane curves and therefore provides an important tool to derive similar results in higher dimensions. A more detailed chapter synopsis can be found at the beginning of each individual chapter.

This dissertation deals with two main subjects. Both are strongly related to boundary problems for the Poisson equation and the Laplace equation, respectively. The oblique boundary problem of potential theory as well as the limit formulae and jump relations of potential theory are investigated. We divide this abstract into two parts and start with the oblique boundary problem. Here we prove existence and uniqueness results for solutions to the outer oblique boundary problem for the Poisson equation under very weak assumptions on boundary, coefficients and inhomogeneities. Main tools are the Kelvin transformation and the solution operator for the regular inner problem, provided in my diploma thesis. Moreover we prove regularization results for the weak solutions of both, the inner and the outer problem. We investigate the non-admissible direction for the oblique vector field, state results with stochastic inhomogeneities and provide a Ritz-Galerkin approximation. Finally we show that the results are applicable to problems from Geomathematics. Now we come to the limit formulae. There we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. The convergence in Lebesgue spaces for integrable functions is already treated in literature. The achievement of this dissertation is this convergence for the weak derivatives of higher orders. Also the layer functions are elements of Sobolev spaces and the surface is a two dimensional suitable smooth submanifold in the three dimensional space. We are considering the potential of the single layer, the potential of the double layer and their first order normal derivatives. Main tool in the proof in Sobolev norm is the uniform convergence of the tangential derivatives, which is proved with help of some results taken from literature. Additionally, we need a result about the limit formulae in the Lebesgue spaces, which is also taken from literature, and a reduction result for normal derivatives of harmonic functions. Moreover we prove the convergence in the Hölder spaces. Finally we give an application of the limit formulae and jump relations. We generalize a known density of several function systems from Geomathematics in the Lebesgue spaces of square integrable measureable functions, to density in Sobolev spaces, based on the results proved before. Therefore we have prove the limit formula of the single layer potential in dual spaces of Soboelv spaces, where also the layer function is an element of such a distribution space.

It was recently reported that imatinib causes cell death in neonatal rat ventricular cardiomyocytes (NRVCM) by triggering endoplasmic reticulum (ER) stress and collapsed mitochondrial membrane potential. Retroviral gene transfer of an imatinib-resistant mutant c-Abl into NRVCM appeared to alleviate imatinib-induced cell death and it was concluded that the observed imatinib-induced cytotoxicity is mediated through direct interactions of imatinib with c-Abl. The imatinib effects were described as being specific for cardiomyocytes only, which are relevant also for the in vivo situation in man. [Kerkelä et al. 2006] The goal of the present study was to reproduce the published experiments and to further explore the dose-response relationship of imatinib-induced cell death in cardiomyocytes. Additional markers of toxicity were investigated. The following biochemical assays were applied: LDH release (membrane leakage marker), MTS-reduction (marker of mitochondrial integrity), ATP cellular contents (energy homoeostasis) and caspase 3/7 activity (apoptosis). The endoplasmatic reticulum (ER) stress markers eIF2α (elongation initiation factor 2α), XBP1 (X Box binding Protein 1), and CHOP (cAMP response element-binding transcription factor (C/EBP) homologous protein) were determined at the transcriptional and protein level. Online monitoring of cell attachment of, oxygen consumption and acidification of the medium by rat heart cells (H9c2) seated on chips (Bionas) allowed the determination of the onset and reversibility of cellular functions. Image analysis measured the spontaneous beating rates after imatinib treatment. The role of imatinib-induced reactive oxygen species was evaluated directly by 2’,7’-Dichlorofluorescein fluorescence and indirectly by means of interference experiments with antioxidants. The specificity of imatinib-induced effects were specific to cardiomyocytes was evaluated in fibroblasts derived from rat heart, lung and skin. The specific role of c-Abl in the imatinib-induced cellular toxicity was investigated by specific gene silencing of c-Abl in NRVCM. The results demonstrated that imatinib caused concentration-dependent cytotoxicity, apoptosis, and ER stress in heart, skin and lung fibroblasts, similar or stronger to those observed in cardiomyocytes. Similar to the results from cardiomyocytes, ER stress markers in fibroblasts were only increased at cytotoxic concentrations of imatinib. This effect was not reversible; also, reactive oxygen species did not participate in the mechanism of the imatinib-induced cytotoxicity in NRVCM. Small interfering RNA (siRNA)-mediated reduction of c-Abl mRNA levels by 51 % and c-Abl protein levels by 70 % had neither an effect on the spontaneous beating frequency of cardiomyocytes nor did it induce cytotoxicity, apoptosis, mitochondrial dysfunction or ER stress in NRVCM. Incubation of imatinib with c-Abl siRNA-transfected NRVCM suggested that reduced c-Abl protein levels did not rescue cardiomyocytes from imatinib-induced cytotoxicity. In conclusion, results from this study do not support a specific c-Abl-mediated mechanism of cytotoxicity in NRVCM.