### Filtern

#### Erscheinungsjahr

- 2012 (2) (entfernen)

#### Dokumenttyp

- Dissertation (2) (entfernen)

#### Sprache

- Englisch (2) (entfernen)

#### Schlagworte

- Transaction Costs (2) (entfernen)

In this thesis we consider the problem of maximizing the growth rate with proportional and fixed costs in a framework with one bond and one stock, which is modeled as a jump diffusion with compound Poisson jumps. Following the approach from [1], we prove that in this framework it is optimal for an investor to follow a CB-strategy. The boundaries depend only on the parameters of the underlying stock and bond. Now it is natural to ask for the investor who follows a CB-strategy which is given by the stopping times \((\tau_i)_{i\in\mathbb N}\) and impulses \((\eta_i)_{i\in\mathbb N}\) how often he has to rebalance. In other words we want to obtain the limit of the inter trading times
\[
\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^n(\tau_{i+1}-\tau_{i}).
\]
We are able to obtain this limit which is given by the expected first exit time of the risky fraction process from some interval under the invariant measure of the Markov chain \((\eta_i)_{i\in\mathbb N}\) using the Ergodic Theorem from von Neumann and Birkhoff. In general, it is difficult to obtain the expectation of the first exit time for the process with jumps. Because of the jump part, when the process crosses the boundaries of the interval an overshoot may occur which makes it difficult to obtain the distribution. Nevertheless we can obtain the first exit time if the process has only negative jumps using scale functions. The main difficulty of this approach is that the scale functions are known only up to their Laplace transforms. In [2] and [3] the closed-form expression for the scale function of the Levy process with phase-type distributed jumps is obtained. Phase-type distributions build a rich class of positive-valued distributions: the exponential, hyperexponential, Erlang, hyper-Erlang and Coxian distributions. Since the scale function is given as a function in a closed form we can differentiate to obtain the expected first exit time using the fluctuation identities explicitly.
[1] Irle, A. and Sass,J.: Optimal portfolio policies under fixed and proportional transaction costs, Advances in Applied Probability 38, 916-942.
[2] Egami, M., Yamazaki, K.: On scale functions of spectrally negative Levy processes with phase-type jumps, working paper, July 3.
[3]Egami, M., Yamazaki, K.: Precautionary measures for credit risk management in jump models, working paper, June 17.

This thesis deals with the relationship between no-arbitrage and (strictly) consistent price processes for a financial market with proportional transaction costs
in a discrete time model. The exact mathematical statement behind this relationship is formulated in the so-called Fundamental Theorem of Asset Pricing (FTAP). Among the many proofs of the FTAP without transaction costs there
is also an economic intuitive utility-based approach. It relies on the economic
intuitive fact that the investor can maximize his expected utility from terminal
wealth. This approach is rather constructive since the equivalent martingale measure is then given by the marginal utility evaluated at the optimal terminal payoff.
However, in the presence of proportional transaction costs such a utility-based approach for the existence of consistent price processes is missing in the literature. So far, rather deep methods from functional analysis or from the theory of random sets have been used to show the FTAP under proportional transaction costs.
For the sake of existence of a utility-maximizing payoff we first concentrate on a generic single-period model with only one risky asset. The marignal utility evaluated at the optimal terminal payoff yields the first component of a
consistent price process. The second component is given by the bid-ask prices
depending on the investors optimal action. Even more is true: nearby this consistent price process there are many strictly consistent price processes. Their exact structure allows us to apply this utility-maximizing argument in a multi-period model. In a backwards induction we adapt the given bid-ask prices in such a way so that the strictly consistent price processes found from maximizing utility can be extended to terminal time. In addition possible arbitrage opportunities of the 2nd kind vanish which can present for the original bid-ask process. The notion of arbitrage opportunities of the 2nd kind has been so
far investigated only in models with strict costs in every state. In our model
transaction costs need not be present in every state.
For a model with finitely many risky assets a similar idea is applicable. However, in the single-period case we need to develop new methods compared
to the single-period case with only one risky asset. There are mainly two reasons
for that. Firstly, it is not at all obvious how to get a consistent price process
from the utility-maximizing payoff, since the consistent price process has to be
found for all assets simultaneously. Secondly, we need to show directly that the
so-called vector space property for null payoffs implies the robust no-arbitrage condition. Once this step is accomplished we can à priori use prices with a
smaller spread than the original ones so that the consistent price process found
from the utility-maximizing payoff is strictly consistent for the original prices.
To make the results applicable for the multi-period case we assume that the prices are given by compact and convex random sets. Then the multi-period case is similar to the case with only one risky asset but more demanding with regard to technical questions.