### Filtern

#### Erscheinungsjahr

- 2012 (33) (entfernen)

#### Dokumenttyp

- Dissertation (33) (entfernen)

#### Sprache

- Englisch (33) (entfernen)

#### Schlagworte

- Transaction Costs (2)
- Arithmetic data-path (1)
- Bildverarbeitung (1)
- Bioinformatik (1)
- Carbon footprint (1)
- Chlamydomonas reinhardii (1)
- Cohen-Lenstra heuristic (1)
- Computeralgebra (1)
- Consistent Price Processes (1)
- Data path (1)

#### Fachbereich / Organisatorische Einheit

Dealing with information in modern times involves users to cope with hundreds of thousands of documents, such as articles, emails, Web pages, or News feeds.
Above all information sources, the World Wide Web presents information seekers with great challenges.
It offers more text in natural language than one is capable to read.
The key idea for this research intends to provide users with adaptable filtering techniques, supporting them in filtering out the specific information items they need.
Its realization focuses on developing an Information Extraction system,
which adapts to a domain of concern, by interpreting the contained formalized knowledge.
Utilizing the Resource Description Framework (RDF), which is the Semantic Web's formal language for exchanging information,
allows extending information extractors to incorporate the given domain knowledge.
Because of this, formal information items from the RDF source can be recognized in the text.
The application of RDF allows a further investigation of operations on recognized information items, such as disambiguating and rating the relevance of these.
Switching between different RDF sources allows changing the application scope of the Information Extraction system from one domain of concern to another.
An RDF-based Information Extraction system can be triggered to extract specific kinds of information entities by providing it with formal RDF queries in terms of the SPARQL query language.
Representing extracted information in RDF extends the coverage of the Semantic Web's information degree and provides a formal view on a text from the perspective of the RDF source.
In detail, this work presents the extension of existing Information Extraction approaches by incorporating the graph-based nature of RDF.
Hereby, the pre-processing of RDF sources allows extracting statistical information models dedicated to support specific information extractors.
These information extractors refine standard extraction tasks, such as the Named Entity Recognition, by using the information provided by the pre-processed models.
The post-processing of extracted information items enables representing these results in RDF format or lists, which can now be ranked or filtered by relevance.
Post-processing also comprises the enrichment of originating natural language text sources with extracted information items by using annotations in RDFa format.
The results of this research extend the state-of-the-art of the Semantic Web.
This work contributes approaches for computing customizable and adaptable RDF views on the natural language content of Web pages.
Finally, due to the formal nature of RDF, machines can interpret these views allowing developers to process the contained information in a variety of applications.

Due to their N-glycosidase activity, ribosome-inactivating proteins (RIPs) are attractive candidates as antitumor and antiviral agents in medical and biological research. In the present study, we have successfully cloned two different truncated gelonins into pET-28a(+) vectors and expressed intact recombinant gelonin (rGel), recombinant C-terminally truncated gelonin (rC3-gelonin) and recombinant N- and C-terminally truncated gelonin (rN34C3-gelonin). Biological experiments showed that all these recombinant gelonins have no inhibiting effect on MCF-7 cell lines. These data suggest that the truncated-gelonins are still having a specific structure that does not allow for internalization into cells. Further, truncation of gelonin leads to partial or complete loss of N-glycosidase as well as DNase activity compared to intact rGel. Our data suggest that C-and N-terminal amino acid residues are involved in the catalytic and cytotoxic activities of rGel. In addition, the intact gelonin should be selected as a toxin in the immunoconjugate rather than truncated gelonin.
In the second part, an immunotoxin composed of gelonin, a basic protein of 30 kDa isolated from the Indian plant Gelonium multiflorum and the cytotoxic drug MTX has been studied as a potential tool of gelonin delivery into the cytoplasm of cells. Results of many experiments showed that, on the average, about 5 molecules of MTX were coupled to one molecule of gelonin. The MTX-gelonin conjugate is able to reduce the viability of MCF-7 cell in a dose-dependent manner (ID50, 10 nM) as shown by MTT assay and significantly induce direct and oxidative DNA damage as shown by the alkaline comet assay. However, in-vitro translation toxicity MTX-gelonin conjugates have IC50, 50.5 ng/ml which is less toxic than that of gelonin alone IC50, 4.6 ng/ml. It can be concluded that the positive charge plays an important role in the N-glycosidase activity of gelonin. Furthermore, conjugation of MTX with gelonin through α- and γ- carboxyl groups leads to the partial loss of its anti-folate activity compared to free MTX. These results, taken together, indicate that conjugation of MTX to gelonin permits delivery of the gelonin into the cytoplasm of cancer cells and exerts a measurable toxic effect.
In the third part, we have isolated and characterized two ribosome-inactivating proteins (RIPs) type I, gelonin and GAP31, from seeds of Gelonium multiflorum. Both proteins exhibit RNA-N-glycosidase activity. The amino acid sequences of gelonin and GAP31 were identified by MALDI and ESI mass spectrometry. Gelonin and GAP31 peptides - obtained by proteolytic digestion (trypsin and Arg-C) - are consistent with the amino acid sequence published by Rosenblum and Huang, respectively. Further structural characterization of gelonin and GAP31 (tryptic and Arg-C peptide mapping) showed that the two RIPs have 96% similarity in their sequence. Thus, these two proteins are most probably isoforms arisen from the same gene by alternative splicing. The ESI-MS analysis of gelonin and GAP31 exhibited at least three different post-translational modified forms. A standard plant paucidomannosidic N-glycosylation pattern (GlcNAc2Man2-5Xyl0-1 and GlcNAc2Man6-12Fuc1-2Xyl0-2) was identified using electrospray ionization MS for gelonin on N196 and GAP31 on N189, respectively. Based on these results, both proteins are located in the vacuoles of Gelonium multiflorum seeds.

Thermoplastic polymer-polymer composites consist of a polymeric matrix and a
polymeric reinforcement. The combination of these materials offers outstanding
mechanical properties at lower weight than standard fiber reinforced materials.
Furthermore, when both polymeric components originate from the same family or,
ideally, from the same polymer, their sustainability degree is higher than standard
fiber reinforced composites.
A challenge of polymer-polymer composites is the subsequent processing of their
semi-finished materials by heating techniques. Since the fibers are made of meltable
thermoplastic, the reinforcing fiber structure might be lost during the heating process.
Hence, the mechanical properties of an overheated polymer-polymer composite
would decline, and finally, they would be even lower than the neat matrix. A decrease
of process temperature to manage the heating challenge is not reasonable since the
cycle time would be increased at the same time. Therefore, this work pursues the
adaption of a fast and selective heating method on the use with polymer-polymer
composites. Inductively activatable particles, so-called susceptors, were distributed in
the matrix to evoke a local heating in the matrix when being exposed to an
alternating magnetic field. In this way, the energy input to the fibers is limited.
The experimental series revealed the induction particle heating effect to be mainly
related to susceptor material, susceptor fraction, susceptor distribution as well as
magnetic field strength, coupling distance, and heating time. A proper heating was
achieved with ferromagnetic particles at a filler content of only 5 wt-% in HDPE as
well as with its respective polymer fiber reinforced composites. The study included
the analysis of susceptor impact on mechanical and thermal matrix properties as well
as a degradation evaluation. The susceptors were identified to have only a marginal
impact on matrix properties. Furthermore, a semi-empiric simulation of the particle
induction heating was applied, which served for the investigation of intrinsic melting
processes.
The achieved results, the experimental as well as the analytic study, were
successfully adapted to a thermoforming process with a polymer-polymer material,
which had been preheated by means of particle induction.

This thesis generalizes the Cohen-Lenstra heuristic for the class groups of real quadratic
number fields to higher class groups. A "good part" of the second class group is defined.
In general this is a non abelian proper factor group of the second class group. Properties
of those groups are described, a probability distribution on the set of those groups is in-
troduced and proposed as generalization of the Cohen-Lenstra heuristic for real quadratic
number fields. The calculation of number field tables which contain information about
higher class groups is explained and the tables are compared to the heuristic. The agree-
ment is close. A program which can create an internet database for number field tables is
presented.

Generic layout analysis--process of decomposing document image into homogeneous regions for a collection of diverse document images--has many important applications in document image analysis and understanding such as preprocessing of degraded warped, camera-captured document images, high performance layout analysis of document images containing complex cursive scripts, and word spotting in historical document images at page level. Many areas in this field like generic text line extraction method are considered as elusive goals so far, still beyond the reach of the state-of-the-art methods [NJ07, LSZT07, KB06]. This thesis addresses this problem in such a way that it presents generic, domain-independent, text line extraction and text and non-text segmentation methods, and then describes some important applications, that were developed based on these methods. An overview of the key contributions of this thesis is as follows.
The first part of this thesis presents a generic text line extraction method using a combination of matched filtering and ridge detection techniques, which are commonly used in computer vision. Unlike the state-of-the-art text line extraction methods in the literature, the generic text line extraction method can be equally and robustly applied to a large variety of document image classes including scanned and camera-captured documents, binary and grayscale documents, typed-text and handwritten documents, historical and contemporary documents, and documents containing different scripts. Different standard datasets are selected for performance evaluation that belong to different categories of document images such as the UW-III [GHHP97] dataset of scanned documents, the ICDAR 2007 [GAS07] and the UMD [LZDJ08] datasets of handwritten documents, the DFKI-I [SB07] dataset of camera-captured documents, Arabic/Urdu script documents dataset, and German calligraphic (Fraktur) script historical documents dataset. The generic text line extraction method achieves 86% (n = 23,763 text lines in 650 documents) text line detection accuracy which is better than the aggregate accuracy of 73% of the best performing domain-specific state-of-the-art methods. To the best of the author's knowledge, it is the first general-purpose text line extraction method that can be equally used for a diverse collection of documents.
This thesis also presents an active contour (snake) based curled text line extraction method for warped, camera-captured document images. The presented approach is applied to DFKI-I [SB07] dataset of camera-captured, Latin script document images for curled text line extraction. It achieves above 95% (n = 3,091 text lines in 102 documents) text line detection accuracy, which is significantly better than the competing state-of-the-art curled text line extraction methods. The presented text line extraction method can also be applied to document images containing different scripts like Chinese, Devanagari, and Arabic after small modifications.
The second part of this thesis presents an improved version of the state-of-the-art multiresolution morphology (Leptonica) based text and non-text segmentation method [Blo91], which is a domain-independent page segmentation approach and can be equally applied to a diverse collection of binarized document images. It is demonstrated that the presented improvements result in an increase in segmentation accuracy from 93% to 99% (n = 113 documents).
This thesis also introduces a discriminative learning based approach for page segmentation, where a self-tunable multi-layer perceptron (MLP) classifier [BS10] is trained for distinguishing between text and non-text connected components. Unlike other classification based page segmentation approaches in the literature, the connected components based discriminative learning based approach is faster than pixel based classification methods and does not require a block segmentation method beforehand. A segmentation accuracy of $96\%$ ($n = 113$ documents) is achieved in comparison to the state-of-the-art multiresolution morphology (Leptonica) based page segmentation method [Blo91] that achieves a segmentation accuracy of 93%. In addition to text and non-text segmentation of Latin script documents, the presented approach can also be adapted for document images containing other scripts as well as for other specialized layout analysis tasks such as digit and non-digit segmentation [HBSB12], orientation detection [RBSB09], and body-text and side-note segmentation [BAESB12].
Finally, this thesis presents important applications of the two generic layout analysis techniques, ridge-based text line extraction method and the multi-resolution morphology based text and non-text segmentation method, discussed above. First, a complete preprocessing pipeline is described for removing different types of degradations from grayscale warped, camera-captured document images that includes removal of grayscale degradations such as non-uniform shadows and blurring through binarization, noise cleanup applying page frame detection, and document rectification using monocular dewarping. Each of these preprocessing steps shows significant improvement in comparison to the analyzed state-of-the-art methods in the literature. Second, a high performance layout analysis method is described for complex Arabic script document images written in different languages such as Arabic, Urdu, and Persian and different styles for example Naskh and Nastaliq. The presented layout analysis system is robust against different types of document image degradations and shows better performance for text and non-text segmentation, text line extraction, and reading order determination on a variety of Arabic and Urdu document images as compared to the state-of-the-art methods. It can be used for large scale Arabic and Urdu documents' digitization processes. These applications demonstrate that the layout analysis methods, ridge-based text line extraction and the multi-resolution morphology based text and non-text segmentation, are generic and can be applied easily to a large collection of diverse document images.

Standard bases are one of the main tools in computational commutative algebra. In 1965
Buchberger presented a criterion for such bases and thus was able to introduce a first approach for their computation. Since the basic version of this algorithm is rather inefficient
due to the fact that it processes lots of useless data during its execution, active research for
improvements of those kind of algorithms is quite important.
In this thesis we introduce the reader to the area of computational commutative algebra with a focus on so-called signature-based standard basis algorithms. We do not only
present the basic version of Buchberger’s algorithm, but give an extensive discussion of different attempts optimizing standard basis computations, from several sorting algorithms
for internal data up to different reduction processes. Afterwards the reader gets a complete
introduction to the origin of signature-based algorithms in general, explaining the under-
lying ideas in detail. Furthermore, we give an extensive discussion in terms of correctness,
termination, and efficiency, presenting various different variants of signature-based standard basis algorithms.
Whereas Buchberger and others found criteria to discard useless computations which
are completely based on the polynomial structure of the elements considered, Faugère presented a first signature-based algorithm in 2002, the F5 Algorithm. This algorithm is famous for generating much less computational overhead during its execution. Within this
thesis we not only present Faugère’s ideas, we also generalize them and end up with several
different, optimized variants of his criteria for detecting redundant data.
Being not completely focussed on theory, we also present information about practical
aspects, comparing the performance of various implementations of those algorithms in the
computer algebra system Singular over a wide range of example sets.
In the end we give a rather extensive overview of recent research in this area of computational commutative algebra.

The scientific aim of this work was to synthesize and characterize new bidentate and tridentate phosphine ligands , their corresponding palladium complexes and to examine their application as homogenous catalysts. Later on, a part of the obtained palladium catalysts was immobilized and used as heterogonous catalyst.
Pyrimidinyl functionalized diphenyl phosphine ligands were synthesized by ring closure of [2-(3-dimethylamino-1-oxoprop-2-en-yl)phenyl]diphenylphosphine with an excess of substituted guanidinium salts. Furthermore to increase the electron density at phosphorous centre the two aryl substituents on the phosphanyl group were exchanged against two alkyl substituents. Electron rich pyrimidinyl functionalized dialkyl phosphine ligands were synthesized from pyrimidinyl functionalized bromobenzene in a process involving lithiation followed by reaction with a chlorodialkylphosphine.
Starting from the new synthesized diaryl phosphine ligands, their corresponding palladium complexes were synthesized. I was able to show that slight changes at the amino group of [(2-aminopyrimidin-4-yl)aryl]phosphines lead to pronounced differences in the stability and catalytic activity of the corresponding palladium(II) complexes. Having a P,C coordination mode, the palladium complex can catalyze rapidly the Suzuki coupling reaction of phenylbronic acid with arylbromides even at room temperature with a low loading.
Using the NH2 group of the aminopyrimidine as a potential site for the introduction of an other substituent, bidentate and tridentate ligands containing phosphorous atoms connected to the aminopyrimidine group and their corresponding palladium complexes were synthesized and characterized.
Two ligands [2- and 4-(4-(2-amino)pyrimidinyl)phenyl]diphenylphosphine (containing NH2 group) functionalized with a ethoxysilane group were synthesized. The palladium complexes based on these ligands were prepared and immobilized on commercial silica and MCM-41. Using elemental analysis, FT-IR, solid state 31P, 13C and 29Si CP–MAS NMR spectroscopy, XRD and N2 adsorption the success of the immobilization was confirmed and the structure of the heterogenized catalyst was investigated.
The resulting heterogeneous catalysts were applied for the Suzuki reaction and exhibited excellent activity, selectivity and reusability.

This thesis is devoted to furthering the tropical intersection theory as well as to applying the
developed theory to gain new insights about tropical moduli spaces.
We use piecewise polynomials to define tropical cocycles that generalise the notion of tropical Cartier divisors to higher codimensions, introduce an intersection product of cocycles with tropical cycles and use the connection to toric geometry to prove a Poincaré duality for certain cases. Our
main application of this Poincaré duality is the construction of intersection-theoretic fibres under a
large class of tropical morphisms.
We construct an intersection product of cycles on matroid varieties which are a natural
generalisation of tropicalisations of classical linear spaces and the local blocks of smooth tropical
varieties. The key ingredient is the ability to express a matroid variety contained in another matroid variety by a piecewise polynomial that is given in terms of the rank functions of the corresponding
matroids. In particular, this enables us to intersect cycles on the moduli spaces of n-marked abstract
rational curves. We also construct a pull-back of cycles along morphisms of smooth varieties, relate
pull-backs to tropical modifications and show that every cycle on a matroid variety is rationally
equivalent to its recession cycle and can be cut out by a cocycle.
Finally, we define families of smooth rational tropical curves over smooth varieties and construct a tropical fibre product in order to show that every morphism of a smooth variety to the moduli space of abstract rational tropical curves induces a family of curves over the domain of the morphism.
This leads to an alternative, inductive way of constructing moduli spaces of rational curves.

The main topic of this thesis is to define and analyze a multilevel Monte Carlo algorithm for path-dependent functionals of the solution of a stochastic differential equation (SDE) which is driven by a square integrable, \(d_X\)-dimensional Lévy process \(X\). We work with standard Lipschitz assumptions and denote by \(Y=(Y_t)_{t\in[0,1]}\) the \(d_Y\)-dimensional strong solution of the SDE.
We investigate the computation of expectations \(S(f) = \mathrm{E}[f(Y)]\) using randomized algorithms \(\widehat S\). Thereby, we are interested in the relation of the error and the computational cost of \(\widehat S\), where \(f:D[0,1] \to \mathbb{R}\) ranges in the class \(F\) of measurable functionals on the space of càdlàg functions on \([0,1]\), that are Lipschitz continuous with respect to the supremum norm.
We consider as error \(e(\widehat S)\) the worst case of the root mean square error over the class of functionals \(F\). The computational cost of an algorithm \(\widehat S\), denoted \(\mathrm{cost}(\widehat S)\), should represent the runtime of the algorithm on a computer. We work in the real number model of computation and further suppose that evaluations of \(f\) are possible for piecewise constant functions in time units according to its number of breakpoints.
We state strong error estimates for an approximate Euler scheme on a random time discretization. With this strong error estimates, the multilevel algorithm leads to upper bounds for the convergence order of the error with respect to the computational cost. The main results can be summarized in terms of the Blumenthal-Getoor index of the driving Lévy process, denoted by \(\beta\in[0,2]\). For \(\beta <1\) and no Brownian component present, we almost reach convergence order \(1/2\), which means, that there exists a sequence of multilevel algorithms \((\widehat S_n)_{n\in \mathbb{N}}\) with \(\mathrm{cost}(\widehat S_n) \leq n\) such that \( e(\widehat S_n) \precsim n^{-1/2}\). Here, by \( \precsim\), we denote a weak asymptotic upper bound, i.e. the inequality holds up to an unspecified positive constant. If \(X\) has a Brownian component, the order has an additional logarithmic term, in which case, we reach \( e(\widehat S_n) \precsim n^{-1/2} \, (\log(n))^{3/2}\).
For the special subclass of $Y$ being the Lévy process itself, we also provide a lower bound, which, up to a logarithmic term, recovers the order \(1/2\), i.e., neglecting logarithmic terms, the multilevel algorithm is order optimal for \( \beta <1\).
An empirical error analysis via numerical experiments matches the theoretical results and completes the analysis.

On Gyroscopic Stabilization
(2012)

This thesis deals with systems of the form
\(
M\ddot x+D\dot x+Kx=0\;, \; x \in \mathbb R^n\;,
\)
with a positive definite mass matrix \(M\), a symmetric damping matrix \(D\) and a positive definite stiffness
matrix \(K\).
If the equilibrium in the system is unstable, a small disturbance is enough to set the system in motion again. The motion of the system sustains itself, an effect which is called self-excitation or self-induced vibration. The reason behind this effect is the presence of negative damping, which results for example from dry friction.
Negative damping implies that the damping matrix \(D\) is indefinite or negative definite. Throughout our work, we assume \(D\) to be indefinite, and that the system possesses both stable and unstable modes and thus is unstable.
It is now the idea of gyroscopic stabilization to mix the modes of a system with indefinite damping such
that the system is stabilized without introducing further
dissipation. This is done by adding gyroscopic forces \(G\dot x\) with a suitable
skew-symmetric matrix \(G\) to the left-hand side. We call \(G=-G^T\in\mathbb R^{n\times n}\) a gyroscopic stabilizer for
the unstable system, if
\(
M\ddot x+(D+ G)\dot x+Kx=0
\)
is asymptotically stable. We show the existence of \(G\) in space dimensions three and four.