### Refine

#### Year of publication

- 2007 (31) (remove)

#### Document Type

- Doctoral Thesis (31) (remove)

#### Language

- English (31) (remove)

#### Keywords

- Visualisierung (3)
- Computergraphik (2)
- Elastoplastizität (2)
- Nichtlineare Finite-Elemente-Methode (2)
- computational mechanics (2)
- A-infinity-bimodule (1)
- A-infinity-category (1)
- A-infinity-functor (1)
- ASM (1)
- Abrechnungsmanagement (1)

#### Faculty / Organisational entity

In urban planning, sophisticated simulation models are key tools to estimate future population growth for measuring the impact of planning decisions on urban developments and the environment. Simulated population projections usually result in large, macro-scale, multivariate geospatial data sets. Millions of records have to be processed, stored, and visualized to help planners explore and analyze complex population patterns. We introduce a database driven framework for visualizing geospatial multidimensional simulation data based on the output from UrbanSim, a software for the analysis and planning of urban developments. The designed framework is extendable and aims at integrating empirical-stochastic methods and urban simulation models with techniques developed for information visualization and cartography. First, we develop an empirical model for the estimation of residential building types based on demographic household characteristics. The predicted dwelling type information is important for the analysis of future material use, carbon footprint calculations, and for visualizing simultaneously the results of land usage, density, and other significant parameters in 3D space. Our model uses multinomial logistic regression to derive building types at different scales. The estimated regression coefficients are applied to UrbanSim output in order to predict residential building types. The simulation results and the estimated building types are managed in an object-relational geodatabase. From the database, density, building types, and significant demographic variables are visually encoded as scalable, georeferenced 3D geometries and displayed on top of aerial photographs in a Google Earth visual synthesis. The geodatabase can be accessed and the visualization parameters can be chosen through a web-based user interface. The geometries are encoded in KML, Google's markup language, as ready-to-visualize data sets. The goal is to enhance human cognition by displaying abstract representations of multidimensional data sets in a realistic context and thus to support decision making in planning processes.

The visualization of numerical fluid flow datasets is essential to the engineering processes that motivate their computational simulation. To address the need for visual representations that convey meaningful relations and enable a deep understanding of flow structures, the discipline of Flow Visualization has produced many methods and schemes that are tailored to a variety of visualization tasks. The ever increasing complexity of modern flow simulations, however, puts an enormous demand on these methods. The study of vortex breakdown, for example, which is a highly transient and inherently three-dimensional flow pattern with substantial impact wherever it appears, has driven current techniques to their limits. In this thesis, we propose several novel visualization methods that significantly advance the state of the art in the visualization of complex flow structures. First, we propose a novel scheme for the construction of stream surfaces from the trajectories of particles embedded in a flow. These surfaces are extremely useful since they naturally exploit coherence between neighboring trajectories and are highly illustrative in nature. We overcome the limitations of existing stream surface algorithms that yield poor results in complex flows, and show how the resulting surfaces can be used a building blocks for advanced flow visualization techniques. Moreover, we present a visualization method that is based on moving section planes that travel through a dataset and sample the flow. By considering the changes to the flow topology on the plane as it moves, we obtain a method of visualizing topological structures in three-dimensional flows that are not accessible by conventional topological methods. On the same algorithmic basis, we construct an algorithm for the tracking of critical points in such flows, thereby enabling the treatment of time-dependent datasets. Last, we address some problems with the recently introduced Lagrangian techniques. While conceptually elegant and generally applicable, they suffer from an enormous computational cost that we significantly use by developing an adaptive approximation algorithm. This allows the application of such methods on very large and complex numerical simulations. Throughout this thesis, we will be concerned with flow visualization aspect of general practical significance but we will particularly emphasize the remarkably challenging visualization of the vortex breakdown phenomenon.

The present work deals with the (global and local) modeling of the windfield on the real topography of Rheinland-Pfalz. Thereby the focus is on the construction of a vectorial windfield from low, irregularly distributed data given on a topographical surface. The developed spline procedure works by means of vectorial (homogeneous, harmonic) polynomials (outer harmonics) which control the oscillation behaviour of the spline interpoland. In the process the characteristic of the spline curvature which defines the energy norm is assumed to be on a sphere inside the Earth interior and not on the Earth’s surface. The numerical advantage of this method arises from the maximum-minimum principle for harmonic functions.

In this thesis we classify simple coherent sheaves on Kodaira fibers of types II, III and IV (cuspidal and tacnode cubic curves and a plane configuration of three concurrent lines). Indecomposable vector bundles on smooth elliptic curves were classified in 1957 by Atiyah. In works of Burban, Drozd and Greuel it was shown that the categories of vector bundles and coherent sheaves on cycles of projective lines are tame. It turns out, that all other degenerations of elliptic curves are vector-bundle-wild. Nevertheless, we prove that the category of coherent sheaves of an arbitrary reduced plane cubic curve, (including the mentioned Kodaira fibers) is brick-tame. The main technical tool of our approach is the representation theory of bocses. Although, this technique was mainly used for purely theoretical purposes, we illustrate its computational potential for investigating tame behavior in wild categories. In particular, it allows to prove that a simple vector bundle on a reduced cubic curve is determined by its rank, multidegree and determinant, generalizing Atiyah's classification. Our approach leads to an interesting class of bocses, which can be wild but are brick-tame.

In the present work the modelling and numerical treatment of discontinuities in thermo-mechanical solids is investigated and applied to diverse physical problems. From this topic a structure for this work results, which considers the formulation of thermo-mechanical processes in continua in the first part and which forms the mechanical and thermodynamical framework for the description of discontinuities and interfaces, that is performed in the second part. The representation of the modelling of solid materials bases on the detailed derivation of geometrically nonlinear kinematics, that yields different strain and stress measures for the material and spatial configuration. Accordingly, this results in different formulations of the mechanical and thermodynamical balance equations. On these foundations we firstly derive by means of the concepts of the plasticity theory an elasto-plastic prototype-model, that is extended subsequently. In the centre of interest is the formulation of damage models in consideration of rate-dependent material behaviour. In the next step follows the extension of the isothermal material models to thermo-mechanically coupled problems, whereby also the special case of adiabatic processes is discussed. Within the representation of the different constitutive laws, the importance is attached to their modular structure. Moreover, a detailed discussion of the isothermal and the thermo-mechanically coupled problem with respect to their numerical treatment is performed. For this purpose the weak forms with respect to the different configurations and the corresponding linearizations are derived and discretized. The derived material models are highlighted by numerical examples and also proved with respect to plausibility. In order to take discontinuities into account appropriate kinematics are introduced and the mechanical and thermodynamical balance equations have to be modified correspondingly. The numerical description is accomplished by so-called interface-elements, which are based on an adequate discretization. In this context two application fields are distinguished. On the one side the interface elements provide a tool for the description of postcritical processes in the framework of localization problems, which include material separation and therefore they are appropriate for the description of cutting processes. Here in turn one has to make the difference between the domain-dependent and the domain-independent formulation, which mainly differ in the definition of the interfacial strain measure. On the other side material properties are attached to the interfaces whereas the spatial extension is neglectable. A typical application of this type of discontinuities can be found in the scope of the modelling of composites, for instance. In both applications the corresponding thermo-mechanical formulations are derived. Finally, the different interface formulations are highlighted by some numerical examples and they are also proved with respect to plausibility.

Thermoelasticity represents the fusion of the fields of heat conduction and elasticity in solids and is usually characterized by a twofold coupling. Thermally induced stresses can be determined as well as temperature changes caused by deformations. Studying the mutual influence is subject of thermoelasticity. Usually, heat conduction in solids is based on Fourier’s law which describes a diffusive process. It predicts unnatural infinite transmission speed for parts of local heat pulses. At room temperature, for example, these parts are strongly damped. Thus, in these cases most engineering applications are described satisfactorily by the classical theory. However, in some situations the predictions according to Fourier’s law fail miserable. One of these situations occurs at temperatures near absolute zero, where the phenomenon of second sound1 was discovered in the 20th century. Consequently, non-classical theories experienced great research interest during the recent decades. Throughout this thesis, the expression “non-classical” refers to the fact that the constitutive equation of the heat flux is not based on Fourier’s law. Fourier’s classical theory hypothesizes that the heat flux is proportional to the temperature gradient. A new thermoelastic theory, on the one hand, needs to be consistent with classical thermoelastodynamics and, on the other hand, needs to describe second sound accurately. Hence, during the second half of the last century the traditional parabolic heat equation was replaced by a hyperbolic one. Its coupling with elasticity leads to non-classical thermomechanics which allows the modeling of second sound, provides a passage to the classical theory and additionally overcomes the paradox of infinite wave speed. Although much effort is put into non-classical theories, the thermoelastodynamic community has not yet agreed on one approach and a systematic research is going on worldwide.Computational methods play an important role for solving thermoelastic problems in engineering sciences. Usually this is due to the complex structure of the equations at hand. This thesis aims at establishing a basic theory and numerical treatment of non-classical thermoelasticity (rather than dealing with special cases). The finite element method is already widely accepted in the field of structural solid mechanics and enjoys a growing significance in thermal analyses. This approach resorts to a finite element method in space as well as in time.

In the thesis the author presents a mathematical model which describes the behaviour of the acoustical pressure (sound), produced by a bass loudspeaker. The underlying physical propagation of sound is described by the non--linear isentropic Euler system in a Lagrangian description. This system is expanded via asymptotical analysis up to third order in the displacement of the membrane of the loudspeaker. The differential equations which describe the behaviour of the key note and the first order harmonic are compared to classical results. The boundary conditions, which are derived up to third order, are based on the principle that the small control volume sticks to the boundary and is allowed to move only along it. Using classical results of the theory of elliptic partial differential equations, the author shows that under appropriate conditions on the input data the appropriate mathematical problems admit, by the Fredholm alternative, unique solutions. Moreover, certain regularity results are shown. Further, a novel Wave Based Method is applied to solve appropriate mathematical problems. However, the known theory of the Wave Based Method, which can be found in the literature, so far, allowed to apply WBM only in the cases of convex domains. The author finds the criterion which allows to apply the WBM in the cases of non--convex domains. In the case of 2D problems we represent this criterion as a small proposition. With the aid of this proposition one is able to subdivide arbitrary 2D domains such that the number of subdomains is minimal, WBM may be applied in each subdomain and the geometry is not altered, e.g. via polygonal approximation. Further, the same principles are used in the case of 3D problem. However, the formulation of a similar proposition in cases of 3D problems has still to be done. Next, we show a simple procedure to solve an inhomogeneous Helmholtz equation using WBM. This procedure, however, is rather computationally expensive and can probably be improved. Several examples are also presented. We present the possibility to apply the Wave Based Technique to solve steady--state acoustic problems in the case of an unbounded 3D domain. The main principle of the classical WBM is extended to the case of an external domain. Two numerical examples are also presented. In order to apply the WBM to our problems we subdivide the computational domain into three subdomains. Therefore, on the interfaces certain coupling conditions are defined. The description of the optimization procedure, based on the principles of the shape gradient method and level set method, and the results of the optimization finalize the thesis.

In the theoretical part of this thesis, the difference of the solutions of the elastic and the elastoplastic boundary value problem is analysed, both for linear kinematic and combined linear kinematic and isotropic hardening material. We consider both models in their quasistatic, rate-independent formulation with linearised geometry. The main result of the thesis is, that the differences of the physical obervables (the stresses, strains and displacements) can be expressed as composition of some linear operators and play operators with respect to the exterior forces. Explicit homotopies between both solutions are presented. The main analytical devices are Lipschitz estimates for the stop and the play operator. We present some generalisations of the standard estimates. They allow different input functions, different initial memories and different scalar products. Thereby, the underlying time involving function spaces are the Sobolov spaces of first order with arbitrary integrability exponent between one and infinity. The main results can easily be generalised for the class of continuous functions with bounded total variation. In the practical part of this work, a method to correct the elastic stress tensor over a long time interval at some chosen points of the body is presented and analysed. In contrast to widespread uniaxial corrections (Neuber or ESED), our method takes multiaxiality phenomena like cyclic hardening/softening, ratchetting and non-masing behaviour into account using Jiang's model of elastoplasticity. It can be easily adapted to other constitutive elastoplastic material laws. The theory for our correction model is developped for linear kinematic hardening material, for which error estimated are derived. Our numerical algorithm is very fast and designed for the case that the elastic stress is piecewise linear. The results for the stresses can be significantly improved with Seeger's empirical strain constraint. For the improved model, a simple predictor-correcor algorithm for smooth input loading is established.

The main aim of this work was to obtain an approximate solution of the seismic traveltime tomography problems with the help of splines based on reproducing kernel Sobolev spaces. In order to be able to apply the spline approximation concept to surface wave as well as to body wave tomography problems, the spherical spline approximation concept was extended for the case where the domain of the function to be approximated is an arbitrary compact set in R^n and a finite number of discontinuity points is allowed. We present applications of such spline method to seismic surface wave as well as body wave tomography, and discuss the theoretical and numerical aspects of such applications. Moreover, we run numerous numerical tests that justify the theoretical considerations.

Modelling languages are important in the process of software development. The suitability of a modelling language for a project depends on its applicability to the target domain. Here, domain-specific languages have an advantage over more general modelling languages. On the other hand, modelling languages like the Unified Modeling Language can be used in a wide range of domains, which supports the reuse of development knowledge between projects. This thesis treats the syntactical and semantical harmonisation of modelling languages and their combined use, and the handling of complexity of modelling languages by providing language subsets - called language profiles - with tailor-made formal semantics definitions, generated by a profile tool. We focus on the widely-used modelling languages SDL and UML, and formal semantics definitions specified using Abstract State Machines.