Filtern
Erscheinungsjahr
Dokumenttyp
- Dissertation (1255) (entfernen)
Sprache
- Deutsch (671)
- Englisch (583)
- Mehrsprachig (1)
Schlagworte
- Visualisierung (18)
- Simulation (16)
- Apoptosis (12)
- Katalyse (12)
- Finite-Elemente-Methode (11)
- Phasengleichgewicht (11)
- Stadtplanung (11)
- Mobilfunk (10)
- Modellierung (10)
- Eisen (9)
Fachbereich / Organisatorische Einheit
- Fachbereich Chemie (304)
- Fachbereich Maschinenbau und Verfahrenstechnik (229)
- Fachbereich Mathematik (225)
- Fachbereich Informatik (139)
- Fachbereich Biologie (99)
- Fachbereich ARUBI (71)
- Fachbereich Elektrotechnik und Informationstechnik (66)
- Fachbereich Bauingenieurwesen (38)
- Fachbereich Sozialwissenschaften (29)
- Fachbereich Raum- und Umweltplanung (22)
Die Versorgungsaufgaben für Niederspannungsnetze werden sich in den kommenden Jahrzehnten durch die weitere Verbreitung von Photovoltaikanlagen, Wärmepumpenheizungen und Elektroautomobilen gegenüber denen des Jahres 2018 voraussichtlich stark ändern. In der Praxis verbreitete Planungsgrundsätze für den Neubau von Niederspannungsnetzen sind veraltet, denn sie stammen vielfach in ihren Grundzügen aus Zeiten, in denen die neuen Lasten und Einspeisungen nicht erwartet und dementsprechend nicht berücksichtigt wurden. Der Bedarf für neue Planungsgrundsätze fällt zeitlich mit der Verfügbarkeit regelbarer Ortsnetztransformatoren (rONT) zusammen, die zur Verbesserung der Spannungsverhältnisse im Netz eingesetzt werden können. Die hier entwickelten neuen Planungsgrundsätze erfordern für ländliche und vorstädtische Versorgungsaufgaben (nicht jedoch für städtische Versorgungsaufgaben) den rONT-Einsatz, um die hohen erwarteten Leistungen des Jahres 2040 zu geringen Kosten beherrschen zu können. Eine geeignete rONT-Standardregelkennlinie wird angegeben. In allen Fällen werden abschnittsweise parallelverlegte Kabel mit dem Querschnitt 240 mm² empfohlen.
Entwurf und Optimierung neuer Versuchsanordnungen zur Charakterisierung der Haftung an Grenzflächen
(2004)
Die Beurteilung der mechanischen Haftungsqualität an Grenzflächen ist eine entscheidende Voraussetzung zur aktiven Gestaltung von heterogenen Werkstoffen. Die vorliegende Arbeit zeigt neue Wege für den Entwurf und die Optimierung der dazu nötigen Testverfahren auf. Ausgehend von der zu messenden Größe muß eine Versuchsanordnung
oder eine Probengeometrie entworfen werden, die aufgrund ihrer Konzeption die zu einer verläßlichen Messung notwendigen Voraussetzungen schafft. Mit Hilfe von numerischen Verfahren können auch komplizierte Probengeometrien analysiert und optimiert und die Anwendbarkeit von einfachen Auswerteverfahren überprüft werden.
Ziel ist eine einfache Formel zur Auswertung, die die komplizierte Geometrie nur in Form von einmalig zu bestimmenden Formfaktoren enthält.
Diese Grundidee wird in der vorliegenden Arbeit anhand von drei verschiedenen Versuchsanordnungen ausgeführt, jede wird umfassend analysiert und auch experimentell auf ihre Durchführbarkeit überprüft.
Ausgehend vom BROUTMAN-Versuch (Faser-Matrix-Grenzfläche) beschreibt Kapitel 2 eine Probengeometrie, die eine homogene Grenzflächenbelastung durch eine geeignete Kerbung der Probe aus der äußeren Zugbelastung erzeugt. Die gleichförmige Zugbelastung ist die Voraussetzung für die Anwendbarkeit des Festigkeitskonzeptes.
Zur Berechnung der Festigkeit aus den experimentellen Daten wird eine Näherungsformel abgeleitet, die die Probengeometrie nur als Formfaktoren enthält. Die optimale Probengeometrie und die zugehörigen Formfaktoren folgen aus einer Parameterstudie mit Hilfe der Methode der Finiten Elemente.
Ein experimenteller Vergleich des ursprünglichen BROUTMAN-Versuchs mit dem vorgeschlagenen Zugversuch zeigt die prinzipielle Anwendbarkeit der Versuchsanordungen und des Festigkeitskonzeptes. Der Vergleich stützt weiterhin das Gesamtkonzept, denn die Herstellung der Probenkörper beider Versuchstypen erfolgt sehr ähnlich,während die Grenzflächenbelastung auf sehr unterschiedliche Weise erzeugt wird. Sie stellen deshalb zwei verschiedene Methoden zur Messung derselben Größe dar. In einer zweiseitig gekerbten Zugprobe entsteht durch die Kerbe eine Zugspannung quer zur Hauptbelastungsrichtung. Besteht der Probenkörper aus zwei einseitig gekerbten, beispielsweise durch Kleben zusammengefügten Hälften, so entsteht ebenfalls eine gleichförmige Zugbelastung eines ausgedehnten Bereiches der Grenzfläche.
Diese Idee wird im Kapitel 3 anhand einer Meßreihe aus gleichen Hälften untersucht.
Ein Finite-Elemente-Modell dient außerdem dazu, die optimale Geometrie für einen Probenkörper aus zwei einseitig gekerbten Teilen verschiedenen Materials zu ermitteln.
Es zeigt auch einen weiteren Vorteil dieser Probenform, denn plastische Deformationen beginnen stets im Kerbgrund, nicht an der Grenzfläche. Plastizität beeinflußt die Ergebnisse deshalb weniger, sie bleiben vergleichbar, auch wenn bei einigen Materialsystemen
teilweise plastische Deformationen auftreten.
Treten dagegen vor dem Grenzflächenversagen ausgedehnte plastische Deformationen in der Umgebung der Grenzfläche auf, so entsteht dadurch ein komplexer Spannungszustand, dem das Festigkeitskonzept kaum Rechnung tragen kann. Weiterhin erfolgt Versagen dann zumeist als fortschreitender Riß, so daß ein bruchmechanisches Konzept unumgänglich ist. In dieser Situation wird bei Proben aus homogenem Material mit Anfangsriß das Konzept der realen Brucharbeit bereits erfolgreich angewendet.
Dieses Konzept beschreibt aber auch zufriedenstellend das Versagen von Grenzflächen zwischen unterschiedlichen Materialien, wie anhand einer Versuchsreihe und umfangreichen numerischen Rechnungen im Kapitel 4 gezeigt wird. Das numerische Modell umfaßt ein elastisch-plastisches Materialgesetz mit Verfestigung, Rißausbreitung unter Belastung und ein an die Energiefreisetzungsrate angelehntes Energie-Kriterium
zur Simulation des Rißwachstums. Es geht damit weit über die meisten aus der Literatur bekannten Simulationen hinaus.
The work presented here supports the industrial use of natural fibre reinforced composite
materials under mass production circumstances. Potentials for optimising the
materials’ properties are offered and evaluated with regard to their effect on the
process chain material – coupling agent – processing. The possibility to use these
materials in mass production applications are improved by optimising each partial
stage.
Throughout the world there exists a great variety of suitable applications for this
group of composites affecting the raw materials choice. The Europe’s market is
stamped by the requirements of the automotive industry, the important markets of
Japan and the USA are dominated by civil engineering and landscaping applications.
A yearly increase of 18 % in Europe, 25 % in Japan and 14 % in the US is expected.
The US market offers the largest market volume of more than 480000 t exceeding
the European Market for nearly five times.
To enhance the fields of application for natural fibre reinforced thermoplastics the
common techniques of the film-stacking and the compression moulding process are
used to manufacture optimised composites based on polypropylene and bast (hemp,
flax) as well as leaf (sisal) and wood (spruce) fibres. Therefore new semi finished
parts for the compression moulding process had to be developed.
Within the manufacturing of natural fibre reinforced polypropylene using the filmstacking
process material and process parameters were identified to transfer the
gathered knowledge to the compression moulding process. It has been seen that
most problems are caused by the organic origin of the fibres. Especially the addiction
of the fibres to decompose when treated with higher temperatures under pressure
hampers their use in thermoplastic composites.
By investigating wood fibres as reinforcements, which differ from bast fibres in their
chemical composition the influence of the process parameters temperature and pressure
on the composite properties were evaluated and verified for hemp fibre reinforced
polypropylene. The minimum process time was observed and in order to enhance
the fibre-matrix-adhesion by using coupling agents the diffusion of the coupling
agent molecules was determined theoretically. Therefore a model was evaluated dealing with the maximum mass flow of coupling agent being transferred in the
fibre-matrix-interface because of mass transfer mechanisms.
In order to optimise the wetting of the fibres with the matrix different possibilities to
modify the fibres were investigated. Drying the fibres prior to the manufacturing of the
composite is an easy and effective way to improve the fibre-matrix-adhesion. The
tensile strength of all composites rose conspicuously. The removal of dust and water
soluble substances by washing led to a higher tensile strength only with the sisal fibre
reinforced composite. Washing the other fibres led to decreasing fibre wetting.
Fibre substances like lignin and pectin were removed using the mercerisation technique.
Composites made from these chemically retted fibres show the more disintegrated
fibre structure and a worse wet ability of the fibre surface with the polypropylene.
Hence the tensile and bending strength was not enhanced. The Charpy impact
strength of the composite raised distinctly.
The use of coupling agents based on maleic acid crafted polypropylene led to an increasing
tensile strength up to 58 % compared to the composite manufactured with
pre-dried fibres. The bending strength raised about 109 %. The Charpy decreased
about 60 to 80 %. Flax fibre reinforced composites showed the highest tensile
strength, sisal fibre reinforced composites offered the highest Charpy. No differences
between copolymeric and homopolymeric polypropylene when using PP-MAH as
coupling agents were determined.
The kind of application of the coupling agent in the compound has an major effect on
the amount of coupling agent to be added. The closer the coupling agent is brought
to the fibres surface at the beginning of the impregnation step the less amount has to
be used. If using an aqueous suspension the least amount had to be added as the
coupling agent remains directly on the fibre surface after drying. Mixing the coupling
agent with the polypropylene hinders the well dispersed PP-MAH to act in the fibrematrix-
interface effectively, so the amount of coupling agent has to be increased.
The comparison of coupling agent containing compounds which differ in the amount
of coupling agent and the molar mass distribution showed the amount of coupling
agent related to the mass of fibres to be the important parameter to dose the PPMAH.
The mean molar mass distribution had no effect on the compounds’ properties.Transferring the knowledge gained from the film-stacked composites to the compression
moulding process offered the possibility to use jute long fibre reinforced granules
(LFT) under optimised processing conditions. The composites gained from the molten
and pressed granules showed the highly dependency of the mechanical properties
to the fibre direction in the part. If the fibres are able to flow along the cavity and
direct themselves into parallelism the tensile and bending strength increases in the
main flow direction and decreases perpendicular to this direction. The impact
strength decreases with raising orientation of the fibres. The jute fibre surface presents
a better adhesion to the polypropylene as the surfaces of the hemp, flax and
sisal fibres, which could be improved by adding PP-MAH as coupling agent.
A newly developed pelletised semi finished part with sisal fibre reinforcement and the
development of a direct impregnation process using solely a horizontal plasticating
unit completes the work. Using an established plasticating extruder offers the possibility
for the compression moulding industry to process natural fibre reinforced polypropylene
with less investment. The compression moulded sisal fibre reinforced polypropylene showed varying fibre directions and disproportionate fibre-matrixadhesion.
As a result of the plasticating process in some parts bended fibres are still
visible after compression moulding. Hence the used single-screw plasticator is not
able to equalize the molten material. Increasing the compaction pressure was not
possible as some parts showed beginning fibre degradation. Adding PP-MAH improved
the fibre-matrix-adhesion but the positive effect of the materials’ strength was
not as clear as found for the film-stacked composites. Regarding the additional expenditures
for compounding and the coupling agent costs the use of PP-MAH in
compression moulded parts seems not to be useful.
Compared to the compression moulded glass fibre reinforced polypropylene from
GMT and LFT-materials the natural fibre reinforced composites cannot reach the
high level of material properties. Optimising the fibre-matrix-interface increases the
properties but they are still lower than the properties of the glass fibre reinforced composites. Therefore the natural fibre reinforced materials are not able to substitute
the traditional GMT and LFT, they rather should be used in new applications with
lower demands.
Sozioökonomische Trends mit hoher Raumrelevanz bilden die Grundlage für die Zukunftsfragen von Regionen und Kommunen. Zugleich bedingen ein anhaltender Verstädterungsprozess sowie zunehmend differenziert und zum Teil stark divergent ablaufende Entwicklungsdynamiken eine Zunahme regionaler Ungleichgewichte. Eben diese Entwicklung wirft Fragen nach der Sicher-stellung der Leitvorstellung gleichwertiger Lebensverhältnisse auf. Insbesondere Mittelstädten werden in diesem Zusammenhang gerade für strukturschwache und periphere Regionen als Anker im Raum angesehen. Zugleich stehen Mittelstädte ländlich-peripherer Regionen in einer zunehmenden Diskrepanz hinsichtlich ihrer Funktionszuordnung sowie der an sie gestellten Her-ausforderungen. Einerseits ist ihnen aus raumordnungspolitischer Sicht neben ihrer Rolle als regionale Versorgungs-, Arbeitsmarkt- und Wirtschaftszentren eine stabilisierende Funktion des Umlandes sowie eine Trägerfunktion der ländlichen Entwicklungsdynamik zugeschrieben. Ande-rerseits weisen sie gleichzeitig selbst eine erhöhte Betroffenheit bezüglich des infrastrukturellen Anpassungsdrucks an sozioökonomische Veränderungsprozesse auf, den es zu bewältigen gilt.
Entsprechend gilt der Erhalt und der Ausbau der Leistungsfähigkeit der Mittelstädte außerhalb von Verdichtungsräumen als ein wesentlicher Beitrag zur zukünftigen, flächendeckenden Siche-rung der Grunddaseinsvorsorge in ländlich-peripheren Regionen.
Vorliegende Arbeit widmet sich somit erstens einer Untersuchung der regionalen Stabilisierungs-funktion von Mittelstädten für ländlich-periphere Räume einschließlich einer Analyse der Mög-lichkeiten und Grenzen deren Aufrechterhaltung unter den Einflüssen sozioökonomischer Trans-formationsprozesse und den damit verbundenen Anpassungsbedarfen. Darauf aufbauend um-fasst sie zweitens eine Analyse zur Identifikation von Erfolgsfaktoren, die mittelstädtische Stabili-sierungsfunktionen in ländlich-peripheren Räumen zukünftig sicherstellen.
Hierzu widmet sich die Arbeit zunächst einer definitorischen Einordnung des Stabilisierungsbe-griffs in den Regionalwissenschaften. Eng verknüpft ist damit einhergehend die Analyse landes- und regionalplanerischer sowie regionalökonomischer Ansätze unter dem Blickwinkel ihres Sta-bilisierungsgedankens sowie die Untersuchung von bestehenden Strategien zum Umgang mit regionalen Strukturwandelprozessen.
Daran anknüpfend erfolgt eine indikatorenbasierte beziehungsweise funktionale Typisierung des Stadttypus Mittelstadt im Kontext des ländlich-peripheren Raumtypus. Damit einhergehend wird fünf ausgewählten Fallstudien eine vertiefende Evaluation zugeführt. Hierdurch ergeben sich ergänzende Erkenntnisse insbesondere im Hinblick auf Verflechtungen zwischen Kreisregion und Mittelstadt, auf den Bedeutungsgrad der Mittelstadt bezüglich ihrer Wohn-, Arbeitsplatz- und Versorgungszentralität sowie insbesondere im Hinblick auf bestehende Handlungserfordernisse sowie Entwicklungsstrategien und Handlungsansätze zur Stärkung der Funktion und Rolle der Mittelstadt in und für ihr ländlich-peripheres Umfeld.
Daraus abgeleitet wird dargelegt, welche Handlungserfordernisse sich hieraus für die Regional-entwicklung ergeben und welche zukunftsfähigen Ansätze und Strategien auf der kommunalen, regionalen sowie landesplanerischen Ebene sich besonders eignen, um die Anker- und Stabilisie-rungsfunktion der Mittelstädte ländlicher-peripherer Räume zu stärken und somit letztlich die Daseinsvorsorge in ländlich-peripheren Regionen auch zukünftig gesichert zu wissen.
Die Nähtechnik in Verbindung mit Harzinfusions- und -injektionstechniken eröffnet
ein erhebliches Gewichts- und Kosteneinsparpotential primär belasteter
Strukturbauteile aus Faser-Kunststoff-Verbundwerkstoffen. Dabei ist es unter
bestimmten Voraussetzungen möglich, durch Vernähungen gezielte Steigerungen
mechanischer Eigenschaften zu erreichen. Ein genaues Verständnis wirksamer
Zusammenhänge bezüglich der Änderung mechanischer Kennwerte verglichen mit
dem unvernähten Verbund ist unverzichtbar, um einen Einsatz dieser Technologie im
zivilen Flugzeugbau voranzubringen.
Im Rahmen dieser Arbeit wird eine breit angelegte experimentelle Parameterstudie
zum Einfluss verschiedener Nähparameter auf Scheiben-Elastizitäts- und
Festigkeitseigenschaften von kohlenstofffaserverstärkten Epoxidharzverbunden unter
Zug- und Druckbelastung durchgeführt. Neben der Stichrichtung, der Garnfeinheit,
dem Nahtabstand und der Stichlänge wurde auch die Belastungsrichtung variiert. Bei
einigen Parametereinstellungen konnten keine Änderungen des Elastizitätsmoduls
oder der Festigkeit in der Laminatebene festgestellt werden, wohingegen in anderen
Fällen Reduktionen oder Steigerungen um bis zu einem Drittel des Kennwerts des
unvernähten Laminats beobachtet wurden. Dabei ist vor allem der Einfluss der
Garnfeinheit dominierend.
Die Fehlstellenausbildung infolge eines Stichs in Abhängigkeit der gewählten
Parameter und der Orientierung der Einzelschicht wurde anhand von Schliffbildern in
der Laminatebene untersucht. Ein erheblicher Einfluss der einzelnen Parameter auf
die Fehlstellenausbildung ist festzustellen, wobei wiederum die Garnfeinheit
dominiert. Anhand der Ergebnisse der Auswertung der Fehlstellenausbildung in den
Einzelschichten wurde ein empirisches Modell generiert, womit charakteristische
Fehlstellengröße n wie die Querschnittsfläche, die Breite und die Länge in
Abhängigkeit der genannten Parameter berechnet werden können.
Darauf aufbauend wurde ein Finite-Elemente-Elementarzellenmodell generiert, mit
welchem Scheiben-Elastizitätsgrößen vernähter Laminate abgeschätzt werden
können. Neben der Berücksichtigung der genannten Nähparameter ist der zentrale
Aspekt hierbei die Beschreibung eines Stichs in Form von Reinharzgebiet und
Faserumlenkungsbereich in jeder Einzelschicht.
Stitching technology in combination with Liquid Composite Molding techniques offers
a possibility to reduce significantly weight and costs of primarily loaded structural
parts made of Fiber Reinforced Polymers. Thereby, it is possible to enhance
mechanical properties simultaneously. It is essential to understand effective
correlations of all important parameters concerning changes in mechanical
characteristics due to additional stitching if stitching technologies have to be
established in the civil aircraft industry.
In this thesis, a broad experimental study on the influence of varying stitching
parameters on the membrane tensile and compressive modulus and strength of
carbon fiber reinforced epoxy laminates is presented. The direction of stitching,
thread diameter, spacing and pitch length as well as the direction of testing had been
varied. In some cases, no changes in modulus and strength could be found due to
the chosen parameters, whereas in other cases reductions or enhancements of up to
30 % compared to the unstitched laminate were observed. Thereby, the thread
diameter shows significant influence on these changes in mechanical properties.
In addition, the stitch and void formation in the thickness direction due to the stitching
parameters was investigated by evaluating micrographs in each layer of the laminate.
Again, the thread diameter showed an outstanding influence on the characteristics of
matrix pure area (void) and fiber disorientation. A mathematical model was evaluated
in order to predict in-plane characteristics of stitches and voids, from which the cross
sectional area, the width and the length of a void due to the chosen stitching
parameters can be derived.
Finally, a Finite Element based unit cell model was established to calculate elastic
constants of stitched FRP laminates. With this model it is possible to consider a stitch
as a matrix pure region and additionally an area of in-plane fiber disorientation
depending on the stitching parameters as introduced above. The model was
validated using the experimental data for tensile and compressive loading.
The outstanding flexibility of this FE unit cell approach is shown in a parametric
study, where different void formations as well as stitching parameters were varied in
a stitched, unidirectional laminate. It was found that three different aspects influence
significantly the in-plane elastic constants of stitched laminates. First of all, the
stitching parameters as well as the laminate characteristics define the shape of the
unit cell including the areas of the stitch and the fiber disorientation. Secondly,
stitching changes the fiber volume fraction in all layers, which causes changes in
elastic properties as well. Thirdly, the type and the direction of loading has to be
considered, because each change in the architecture of the laminate results in
different effects on the in-plane elastic constants namely tensile, compressive or
shear moduli as well as the Poisson´s ratios.
The demand of sustainability is continuously increasing. Therefore, thermoplastic
composites became a focus of research due to their good weight to performance
ratio. Nevertheless, the limiting factor of their usage for some processes is the loss of
consolidation during re-melting (deconsolidation), which reduces the part quality.
Several studies dealing with deconsolidation are available. These studies investigate
a single material and process, which limit their usefulness in terms of general
interpretations as well as their comparability to other studies. There are two main
approaches. The first approach identifies the internal void pressure as the main
cause of deconsolidation and the second approach identifies the fiber reinforcement
network as the main cause. Due to of their controversial results and limited variety of
materials and processes, there is a big need of a more comprehensive investigation
on several materials and processes.
This study investigates the deconsolidation behavior of 17 different materials and
material configurations considering commodity, engineering, and performance
polymers as well as a carbon and two glass fiber fabrics. Based on the first law of
thermodynamics, a deconsolidation model is proposed and verified by experiments.
Universal applicable input parameters are proposed for the prediction of
deconsolidation to minimize the required input measurements. The study revealed
that the fiber reinforcement network is the main cause of deconsolidation, especially
for fiber volume fractions higher than 48 %. The internal void pressure can promote
deconsolidation, when the specimen was recently manufactured. In other cases the
internal void pressure as well as the surface tension prevents deconsolidation.
During deconsolidation the polymer is displaced by the volume increase of the void.
The polymer flow damps the progress of deconsolidation because of the internal
friction of the polymer. The crystallinity and the thermal expansion lead to a
reversible thickness increase during deconsolidation. Moisture can highly accelerate
deconsolidation and can increase the thickness by several times because of the
vaporization of water. The model is also capable to predict reconsolidation under the
defined boundary condition of pressure, time, and specimen size. For high pressure
matrix squeeze out occur, which falsifies the accuracy of the model.The proposed model was applied to thermoforming, induction welding, and
thermoplastic tape placement. It is demonstrated that the load rate during
thermoforming is the critical factor of achieving complete reconsolidation. The
required load rate can be determined by the model and is dependent on the cooling
rate, the forming length, the extent of deconsolidation, the processing temperature,
and the final pressure. During induction welding deconsolidation can tremendously
occur because of the left moisture in the polymer at the molten state. The moisture
cannot fully diffuse out of the specimen during the faster heating. Therefore,
additional pressure is needed for complete reconsolidation than it would be for a dry
specimen. Deconsolidation is an issue for thermoplastic tape placement, too. It limits
the placement velocity because of insufficient cooling after compaction. If the
specimen after compaction is locally in a molten state, it deconsolidates and causes
residual stresses in the bond line, which decreases the interlaminar shear strength. It
can be concluded that the study gains new knowledge and helps to optimize these
processes by means of the developed model without a high number of required
measurements.
Aufgrund seiner guten spezifischen Festigkeit und Steifigkeit ist der
endlosfaserverstärkte Thermoplast ein hervorragender Leichtbauwerkstoff. Allerdings
kann es während des Wiederaufschmelzens durch Dekonsolidierung zu einem
Verlust der guten mechanischen Eigenschaften kommen, daher ist Dekonsolidierung
unerwünscht. In vielen Studien wurde die Dekonsolidierung mit unterschiedlichen
Ergebnissen untersucht. Dabei wurde meist ein Material und ein Prozess betrachtet.
Eine allgemeine Interpretation und die Vergleichbarkeit unter den Studien sind
dadurch nur begrenzt möglich. Aus der Literatur sind zwei Ansätze bekannt. Dem
ersten Ansatz liegt der Druckunterschied zwischen Poreninnendruck und
Umgebungsdruck als Hauptursache der Dekonsolidierung zu Grunde. Beim zweiten
Ansatz wird die Faserverstärkung als Hauptursache identifiziert. Aufgrund der
kontroversen Ergebnisse und der begrenzten Anzahl der Materialien und
Verarbeitungsverfahren, besteht die Notwendigkeit einer umfassenden Untersuchung
über mehrere Materialien und Prozesse. Diese Studie umfasst drei Polymere
(Polypropylen, Polycarbonat und Polyphenylensulfid), drei Gewebe (Köper, Atlas und
Unidirektional) und zwei Prozesse (Autoklav und Heißpressen) bei verschiedenen
Faservolumengehalten.
Es wurde der Einfluss des Porengehaltes auf die interlaminare Scherfestigkeit
untersucht. Aus der Literatur ist bekannt, dass die interlaminare Scherfestigkeit mit
der Zunahme des Porengehaltes linear sinkt. Dies konnte für die Dekonsolidierung
bestätigt werden. Die Reduktion der interlaminaren Scherfestigkeit für
thermoplastische Matrizes ist kleiner als für duroplastische Matrizes und liegt im
Bereich zwischen 0,5 % bis 1,5 % pro Prozent Porengehalt. Außerdem ist die
Abnahme signifikant vom Matrixpolymer abhängig.
Im Falle der thermisch induzierten Dekonsolidierung nimmt der Porengehalt
proportional zu der Dicke der Probe zu und ist ein Maß für die Dekonsolidierung. Die
Pore expandiert aufgrund der thermischen Gasexpansion und kann durch äußere
Kräfte zur Expansion gezwungen werden, was zu einem Unterdruck in der Pore
führt. Die Faserverstärkung ist die Hauptursache der Dickenzunahme
beziehungsweise der Dekonsolidierung. Die gespeicherte Energie, aufgebaut während der Kompaktierung, wird während der Dekonsolidierung abgegeben. Der
Dekompaktierungsdruck reicht von 0,02 MPa bis 0,15 MPa für die untersuchten
Gewebe und Faservolumengehalte. Die Oberflächenspannung behindert die
Porenexpansion, weil die Oberfläche vergrößert werden muss, die zusätzliche
Energie benötigt. Beim Kontakt von benachbarten Poren verursacht die
Oberflächenspannung ein Verschmelzen der Poren. Durch das bessere Volumen-
Oberfläche-Verhältnis wird Energie abgebaut. Der Polymerfluss bremst die
Entwicklung der Dickenzunahme aufgrund der erforderlichen Energie (innere
Reibung) der viskosen Strömung. Je höher die Temperatur ist, desto niedriger ist die
Viskosität des Polymers, wodurch weniger Energie für ein weiteres Porenwachstum
benötigt wird. Durch den reversiblen Einfluss der Kristallinität und der
Wärmeausdehnung des Verbundes wird während der Erwärmung die Dicke erhöht
und während der Abkühlung wieder verringert. Feuchtigkeit kann einen enormen
Einfluss auf die Dekonsolidierung haben. Ist noch Feuchtigkeit über der
Schmelztemperatur im Verbund vorhanden, verdampft diese und kann die Dicke um
ein Vielfaches der ursprünglichen Dicke vergrößern.
Das Dekonsolidierungsmodell ist in der Lage die Rekonsolidierung vorherzusagen.
Allerdings muss der Rekonsolidierungsdruck unter einem Grenzwert liegen
(0,15 MPa für 50x50 mm² und 1,5 MPa für 500x500 mm² große Proben), da es sonst
bei der Probe zu einem Polymerfluss aus der Probe von mehr als 2 % kommt. Die
Rekonsolidierung ist eine inverse Dekonsolidierung und weist die gleichen
Mechanismen in der entgegengesetzten Richtung auf.
Das entwickelte Modell basiert auf dem ersten Hauptsatz der Thermodynamik und
kann die Dicke während der Dekonsolidierung und der Rekonsolidierung
vorhersagen. Dabei wurden eine homogene Porenverteilung und eine einheitliche,
kugelförmige Porengröße angenommen. Außerdem wurde die Massenerhaltung
angenommen. Um den Aufwand für die Bestimmung der Eingangsgrößen zu
reduzieren, wurden allgemein gültige Eingabeparameter bestimmt, die für eine
Vielzahl von Konfigurationen gelten. Das simulierte Materialverhalten mit den
allgemein gültigen Eingangsparametern erzielte unter den definierten
Einschränkungen eine gute Übereinstimmung mit dem tatsächlichen
Materialverhalten. Nur bei Konfigurationen mit einer Viskositätsdifferenz von mehr als 30 % zwischen der Schmelztemperatur und der Prozesstemperatur sind die
allgemein gültigen Eingangsparameter nicht anwendbar. Um die Relevanz für die
Industrie aufzuzeigen, wurden die Effekte der Dekonsolidierung für drei weitere
Verfahren simuliert. Es wurde gezeigt, dass die Kraftzunahmegeschwindigkeit
während des Thermoformens ein Schlüsselfaktor für eine vollständige
Rekonsolidierung ist. Wenn die Kraft zu langsam appliziert wird oder die finale Kraft
zu gering ist, ist die Probe bereits erstarrt, bevor eine vollständige Konsolidierung
erreicht werden kann. Auch beim Induktionsschweißen kann Dekonsolidierung
auftreten. Besonders die Feuchtigkeit kann zu einer starken Zunahme der
Dekonsolidierung führen, verursacht durch die sehr schnellen Heizraten von mehr als
100 K/min. Die Feuchtigkeit kann während der kurzen Aufheizphase nicht vollständig
aus dem Polymer ausdiffundieren, sodass die Feuchtigkeit beim Erreichen der
Schmelztemperatur in der Probe verdampft. Beim Tapelegen wird die
Ablegegeschwindigkeit durch die Dekonsolidierung begrenzt. Nach einer scheinbar
vollständigen Konsolidierung unter der Walze kann die Probe lokal dekonsolidieren,
wenn das Polymer unter der Oberfläche noch geschmolzen ist. Die daraus
resultierenden Poren reduzieren die interlaminare Scherfestigkeit drastisch um 5,8 %
pro Prozent Porengehalt für den untersuchten Fall. Ursache ist die Kristallisation in
der Verbindungszone. Dadurch werden Eigenspannungen erzeugt, die in der
gleichen Größenordnung wie die tatsächliche Scherfestigkeit sind.
In der modernen Hubschrauberfertigung werden neben Rotorblättern auch tragende
Strukturteile aus kohlenstofffaserverstärkten Kunststoffen eingesetzt. Um dabei
einen möglichst hohen Leichtbaugrad zu erreichen, werden immer neue Design-
Konzepte entwickelt. Innovative Design-Lösungen sind aber nur dann in der Fertigung
umsetzbar, wenn sie effizient, kostengünstig und fehlerfrei gefertigt werden
können.
Ein wichtiger Baustein für die Produktion sind die Fertigungsvorrichtungen, auf
denen die Bauteile laminiert und ausgehärtet werden. Diese Vorrichtungen sind ein
maßgeblicher Faktor zum Erreichen der geforderten Bauteilqualität. Das Augenmerk
liegt hierbei auf der sogenannten tool-part-interaction, also der Interaktion zwischen
Fertigungsvorrichtung und Faserverbundmaterial. Diese hat einen großen Einfluss
auf das Aufheiz- und Verpressungsverhalten der Prepreg-Materialien und somit auch
direkt auf fertigungsinduzierte Schädigungen wie Faltenbildung und Verzug.
Aktuell kann der Vorrichtungsentwickler lediglich auf Erfahrungswerte zurückgreifen,
um ein gutes Aufheiz- und Verpressungsverhalten der Vorrichtung zu erreichen.
Zur Minimierung von Falten fehlt jedoch häufig sogar das nötige Hintergrundwissen
über die grundlegenden Mechanismen der Faltenbildung. Nur ein langwieriger
trial-and-error Prozess nach Produktion der Vorrichtung kann helfen, Faltenbildung
zu eliminieren oder zumindest zu reduzieren.
Zukünftig muss es ein primäres Ziel für den Vorrichtungsbau sein, Fertigungsmittel
gezielt auslegen und bereits im Rahmen der Konzeptentwicklung Aussagen
über die zu erwartende Bauteilgüte und das Fertigungsergebnis machen zu können.
Einen möglichen Weg stellt die Einführung einer Herstellprozesssimulation dar, da
sie bereits in einer frühen Entwicklungsphase das Aufheiz- und Verpressungsverhalten
eines Bauteils sowie den Einfluss der Fertigungsvorrichtung auf die Bauteilqualität
einschätzen kann. Fertigungsinduzierte Schädigungen, wie der prozessinduzierte
Verzug, lassen sich bereits mit Hilfe von kommerziell erhältlichen Software-Tools
vorhersagen. Um zukünftig auch die Faltenbildung bei der Prepreg-Autoklavfertigung
vorhersagbar zu machen, müssen zwei übergeordnete Fragestellungen bearbeitet
werden:Faltenbildung: Wie läuft die Faltenbildung in der Autoklavfertigung ab und
welche Mechanismen bzw. Einflussfaktoren müssen besonders beachtet werden?
Simulation: Wie muss eine Herstellprozesssimulation geartet sein, um den
Einfluss der Fertigungsvorrichtung auf die Faltenbildung vorhersagen zu können
und Vorrichtungen auf diese Weise zukünftig auslegbar zu machen?
Experimentelle Untersuchungen an Omega- und C-Profilen helfen, die Faltenbildung,
ihren primären Mechanismus und vor allem die verschiedenen Einflussfaktoren
zu verstehen und zu bewerten. Im Falle der vorliegenden Arbeit wurde besonders
die Kompaktierung des Laminates über einem Außenradius und die daraus entstehende
überschüssige Faser- bzw. Rovinglänge als primärer Faltenauslöser betrachtet.
Es konnte aus den Experimenten abgeleitet werden, dass besonders der
Verpressungsweg, die Bauteilgeometrie, das verwendete Faserhalbzeug (unidirektional
oder Gewebe), die tool-part-interaction und das interlaminare Reibverhalten für
den untersuchten Mechanismus von Bedeutung sind. Daraus lassen sich die Mindestanforderungen
an eine Herstellprozesssimulation zusammenstellen.
Eine umfassende Materialcharakterisierung inklusive der interlaminaren Reibung,
der Reibinteraktionen zwischen Bauteil und Fertigungsvorrichtung sowie des
Verpressungsverhaltens des Faserbettes sind der erste Schritt in der Entwicklung
einer industriell einsetzbaren Simulation.
Die Simulation selbst setzt sich aus einem thermo-chemischen und einem
Kompaktiermodul zusammen. Ersteres ermittelt das Aufheizverhalten der Vorrichtung
und des Bauteils im Autoklaven und stellt darüber hinaus Aushärtegrad und
Glasübergangstemperatur als Parameter für das zweite Simulationsmodul zur Verfügung.
Zur korrekten Bestimmung des Wärmeübergangs im Autoklaven wurde ein
semi-empirisches Verfahren entwickelt, das in der Lage ist, Strömungseffekte und
Beladungszustände des Autoklaven zu berücksichtigen. Das Kompaktiermodul umfasst
das Verpressungsverhalten des Faserbettes inklusive des Harzflusses, der toolpart-
interaction und der Relativverschiebung der Laminatlagen zueinander. Besonders
das Erfassen der Durchtränkung des Fasermaterials mittels eines phänomenologischen
Ansatzes und das Einbringen der Reibinteraktionen in die Simulation muss
als Neuerung im Vergleich zu bisherigen Simulationskonzepten gesehen werden. Auf
diese Weise ist die Simulation in der Lage, alle wichtigen Einflussfaktoren der Faltenbildung zu erfassen. Der aus der Simulation auslesbare Spannungszustand kann
Aufschluss über die Faltenbildung geben. Mit Hilfe eines im Rahmen dieser Arbeit
entwickelten (Spannungs-)Kriteriums lässt sich eine Aussage über das zu erwartende
Faltenrisiko treffen. Außerdem ermöglicht die Simulation eine genaue Identifikation
der Haupttreiber der Faltenbildung für das jeweilige Bauteil bzw. Fertigungskonzept.
Parameter- und Sensitivitätsstudien können dann den experimentellen Aufwand
zur Behebung der Faltenbildung deutlich reduzieren.
Die hier vorliegende Arbeit erweitert damit nicht nur das Wissen über die Faltenbildung
in der Prepreg-Autoklavfertigung und deren Einflussfaktoren, sondern gibt
dem Vorrichtungsentwickler auch eine Simulationsmethodik an die Hand, die ihn in
die Lage versetzt, Fertigungsvorrichtungen gezielt auszulegen und zu optimieren.
In addition to rotor blades, primary structural parts are also manufactured from
carbon fiber reinforced plastics in modern helicopter production. New design concepts
are constantly developed in order to reach a maximum degree of lightweight
design. However, innovative design solutions are only realizable, if they can be manufactured
efficiently, economically, and free from defects.
Molds for laminating and curing of composite parts are of particular importance.
They are a relevant factor for achieving the required part quality. The attention is directed
at the so-called tool-part-interaction, i.e. the interaction between tools and fiber
composite materials, which has a great influence on the heating and compaction
behavior of the prepreg materials and therefore also directly on manufacturing induced
damage such as wrinkling and warping.
At present, the tooling designer can only resort to his/her experience to achieve
a good heating and compaction behavior of the molds. However, the necessary background knowledge about the fundamental mechanisms of wrinkling is often lacking
and only a tedious trial-and-error process after the production of the mold can
help eliminate or at least reduce wrinkling.
In the future, the primary goal for tooling production must be to specifically design
the manufacturing equipment and to be able to already make a statement about
the expected part quality and production result during the conceptual stage. A possible
solution is the introduction of a manufacturing process simulation, because at an
early development stage it can estimate the heating and compaction behavior of a
part as well as the influence of the manufacturing equipment on part quality. Commercially
available software tools are already able to predict damage during production,
as e.g. process induced deformation. In order to make wrinkling predictable also,
two primary issues need to be dealt with: Wrinkling: How does wrinkling develop in autoclave manufacturing and which
mechanisms or influencing factors need to be particularly considered?
Simulation: What must be integrated into a manufacturing process simulation,
if it is to predict the influence of the mold on wrinkling and to ensure future
tooling improvement? Experimental examinations of omega and c-profiles help to understand and
evaluate wrinkling, its primary mechanism, and particularly the various influencing
factors. In the case of the present paper, the compaction of the laminate over a convex
radius and the resulting surplus roving length was especially examined as primary
cause for wrinkling. From the experiments could be deduced that the compaction,
the part geometry, the utilized semi-finished fabrics (unidirectional and woven), the
tool-part-interaction and the interlaminar friction are of importance for the examined
mechanism. These factors determine the minimum requirements for a manufacturing
process simulation.
A comprehensive material characterization including interlaminar friction, friction
interaction between part and tool as well as the compaction behavior of the fiber bed
are the first step toward the development of a simulation on an industrial scale. The
simulation consists of a thermochemical and a compaction module. The former determines
the heating behavior of the mold and the part in the autoclave and additionally
provides the degree of cure and the glass transition temperature as parameters
for the second simulation module. A semi-empirical method that is able to consider
flow effects and loading conditions of the autoclave was developed for the correct
determination of the heat transfer within the autoclave. The compaction module comprises
the compaction behavior of the fiber bed including resin flow, tool-partinteraction
and relative displacement of the layers. Especially the integration of the
saturation phase by means of a phenomenological approach and the inclusion of friction
interaction in the simulation must be seen as innovation in comparison to other
simulation concepts. The simulation is thus able to capture all the important influencing
factors of wrinkling. The state of stress that is retrieved from the simulation can
provide information about the formation of wrinkles. Furthermore, the simulation enables
an exact identification of the main drivers for the development of wrinkles in the
respective part or manufacturing concept. Parameters and sensitivity analyses can
then significantly reduce the experimental effort for the elimination of wrinkling.
The present study does therefore not only expand the knowledge about wrinkling
and its influencing factors in prepreg autoclave manufacturing, but also presents
the tooling designer with a simulation methodology that enables him/her to systematically
develop and optimize manufacturing equipment.
Ultrahochfester Beton (UHB oder aus dem Englischen Ultra High Performance Concrete, kurz UHPC) weist eine Druckfestigkeit im Bereich von 150 bis 250 MPa auf. Eine gesteigerte Zugfestigkeit und ein duktiles Verhalten werden durch die Zugabe von Mikrostahlfasern erzielt (Ultra High Performance Fibre Reinforced Concrete, UHPFRC). Der Fasergehalt ist in der Regel höher als bei normalfestem Faserbeton, sodass aufgrund der Fasern ein „Strain-hardening“ Verhalten erreicht werden kann: in einem Biegezugversuch kann die Last nach der Erstrissbildung weiter gesteigert werden bis zur Ausbildung mehrerer feiner Risse. Da der Beitrag der Fasern zum Zugtragverhalten des UHPFRC ein wesentlicher ist, müssen die Bauteile im gerissenen Zustand bemessen werden. Während der statische und dynamische Widerstand bereits umfangreich untersucht wurde, liegen nur wenige Untersuchungen bezüglich das Dauerstandzugverhaltens von gerissenem ultrahochfestem Beton vor. Untersuchungen an normalfestem faserverstärktem Beton haben gezeigt, dass die zeitabhängigen Zugverformungen im gerissenen Zustand größer sind als die in ungerissenem Material.
Um die zu erwartenden Verformungen abschätzen zu können und um das Kriechverhalten des Materials bis zum Versagen zu analysieren, wurde im Rahmen dieser Arbeit ein umfangreiches Versuchsprogramm durchgeführt. Über 60 uniaxiale Zug- und Biegezugprobekörper wurden unter Dauerlast über einen Zeitraum von bis zu 15 Monaten beansprucht. Davon wurden 22 Probekörper nach vier Monaten hinsichtlich ihrer Resttragfähigkeit getestet. Die restlichen Probekörper befinden sich für Langzeit-Messungen weiterhin in den Dauerlastprüfständen. Es wurden dabei verschiedene Parameter untersucht: u.a. das Belastungsniveau, Art und Umfang der Nachbehandlung des Betons, das Betonalter zu Beginn der Belastung, der Fasergehalt und die Faserschlankheit. Das Schwinden der unbelasteten Probekörper sowie das Druckkriechen belasteter Probekörper wurden an der verwendeten Mischung gemessen.
Der UHPFRC wies im Allgemeinen ein sehr stabiles Verhalten auf und es zeigte sich keine unkontrollierte Zunahme der Verformungen infolge eines Faserauszugs. Lediglich bei einem Probekörper kam es bei einer Last von 79% der aufgebrachten Last am Ende der Vorbelastung zum Versagen. Der Autor sieht dabei eine ungünstige Faserausrichtung als mögliche Ursache des frühzeitigen Versagens des Probekörpers an, was auf einen bedeutenden Einfluss dieses Parameters auf die Tragfähigkeit schließen lässt. Hinsichtlich der Bemessung von gerissenen UHPFRC-Bauteilen unter Dauerlast wurde ein Vorschlag für die Bemessung der Dauerstandfestigkeit ausgearbeitet.
Darüber hinaus wurden Faserauszugversuche durchgeführt und das Verbund-Schlupfverhalten der verwendeten Fasern ermittelt. Einige Probekörper wurden nach uniaxialen Zugversuchen per Computertomographie gescannt, um den Zusammenhang der Fasern im Versagensquerschnitt zur Zugfestigkeit der Probekörper zu untersuchen. Die untersuchten Probekörper wiesen unterschiedliche Zugfestigkeiten auf. Diese konnten durch die verschiedenen Faseranzahlen im Versagensquerschnitt gut abgebildet werden.
The focus of this work is to provide and evaluate a novel method for multifield topology-based analysis and visualization. Through this concept, called Pareto sets, one is capable to identify critical regions in a multifield with arbitrary many individual fields. It uses ideas found in graph optimization to find common behavior and areas of divergence between multiple optimization objectives. The connections between the latter areas can be reduced into a graph structure allowing for an abstract visualization of the multifield to support data exploration and understanding.
The research question that is answered in this dissertation is about the general capability and expandability of the Pareto set concept in context of visualization and application. Furthermore, the study of its relations, drawbacks and advantages towards other topological-based approaches. This questions is answered in several steps, including consideration and comparison with related work, a thorough introduction of the Pareto set itself as well as a framework for efficient implementation and an attached discussion regarding limitations of the concept and their implications for run time, suitable data, and possible improvements.
Furthermore, this work considers possible simplification approaches like integrated single-field simplification methods but also using common structures identified through the Pareto set concept to smooth all individual fields at once. These considerations are especially important for real-world scenarios to visualize highly complex data by removing small local structures without destroying information about larger, global trends.
To further emphasize possible improvements and expandability of the Pareto set concept, the thesis studies a variety of different real world applications. For each scenario, this work shows how the definition and visualization of the Pareto set is used and improved for data exploration and analysis based on the scenarios.
In summary, this dissertation provides a complete and sound summary of the Pareto set concept as ground work for future application of multifield data analysis. The possible scenarios include those presented in the application section, but are found in a wide range of research and industrial areas relying on uncertainty analysis, time-varying data, and ensembles of data sets in general.
Diese Arbeit beinhaltet die Synthese zweier cyclischer Amidat-Liganden und die Untersuchung des Koordinationsverhaltens dieser Makrocyclen. Dabei wurden die strukturellen, elektrochemischen und spektroskopischen Eigenschaften der entstandenen Komplexverbindungen untersucht. Um höhere Oxidationsstufen am Metallion besser zu stabilisieren als durch neutrale Liganden, wurden die Liganden H\(_2\)L-Me\(_2\)TAOC und HL-TAAP-\(^t\)Bu\(_2\) hergestellt. Es sind zwölfgliedrige makrocyclische Ringe mit vielen sp\(^2\)-hybridisierten Atomen, die eine sterische Rigidität bedingen. Gleichzeitig besitzen sie zwei trans-ständige, sp\(^3\)-hybridisierte Amin-Donoratome, die eine Faltung entlang der N\(_{Amin}\)-N\(_{Amin}\)-Achse ermöglichen. Die äquatorialen Stickstoffdonoratome werden durch deprotonierte Amid-Gruppen bzw. durch das Stickstoffatom eines Pyridinrings zur Verfügung gestellt. Für beide Liganden konnte eine zufriedenstellende Syntheseroute, mit passablen Ausbeuten etabliert werden. In der Kristallstruktur des Makrocyclus HL-TAAP-\(^t\)Bu\(_2\) wird eine Wanne-Wanne-Konformation beobachtet. Die für eine cis-oktaedrische Koordination an Metallionen benötigte Konformation wird bereits im metallfreien Zustand des Liganden wegen der intramolekularen Wasserstoffbrückenbindungen verwirklicht. Die freie Rotation um die C-C-Bindungen ist bei diesem Liganden nur leicht gehindert, da die diastereotopen H-Atome der Methylengruppen im \(^1\)H-NMR-Spektrum als breite Singuletts in Erscheinung treten. Die Makrocyclen konnten erfolgreich mit Nickel(II)-, Kupfer(II)- und Cobalt(II)-Ionen komplexiert und kristallisiert werden. Dabei wurden zufriedenstellende Ausbeuten erhalten. Ohne weiteren zweifach koordinierenden Coliganden bildet der Ligand H\(_2\)L-Me\(_2\)TAOC stets fünffach koordinierte Mono-chloro-Komplexe. Der Ligand HL-TAAP-\(^t\)Bu\(_2\) bildet sechsfach koordinierte Verbindungen. Durch die Verwendung von zweizähnigen Coliganden wurde für den Makrocyclus H\(_2\)L-Me\(_2\)TAOC eine sechsfache Koordination erzwungen. Wie alle sechsfach koordinierte Verbindungen in dieser Arbeit liegen sie in einer cis-oktaedrischen Koordinationsumgebung vor. Um Vergleichskomplexe zu erhalten, wurden auch mit den Diazapyridinophan-Liganden L-N\(_4\)Me\(_2\) und L-N\(_4\)\(^t\)Bu\(_2\) die entsprechenden Kupfer- und Nickelkomplexe mit den jeweiligen Coliganden synthetisiert. In den Kristallstrukturen sind die entsprechenden Verbindungen der Diazapyridinophan-Liganden generell stärker gefaltet als die der Amidat-Liganden. Durch die starken \( \sigma\)-Donoreigenschaften der Amidatgruppen werden im Allgemeinen kürzere äquatoriale Bindungen zu den Metallionen verursacht. Durch den Vergleich der Bindungslängen mit ähnlichen bekannten high- und low-spin-Cobalt(II)-Komplexen hat sich gezeigt, dass für die Länge der Co-N\(_{Amid}\)-Bindung im high-spin-Zustand Werte von 1,95 bis 1,97 Å gefunden werden. Für den low-spin-Zustand werden Werte zwischen 1,92 und 1,95 Å gefunden. Durch die elektrochemischen Untersuchungen konnte gezeigt werden, dass beim überwiegenden Teil der Verbindungen das Potential der Oxidationen deutlich in der Reihenfolge der Makrocyclen H\(_2\)L-Me\(_2\)TAOC < HL-TAAP-\(^t\)Bu\(_2\) < L-N\(_4\)Me\(_2\) < L-N\(_4\)\(^t\)Bu\(_2\) ansteigt. Das belegt eindeutig die leichtere Oxidierbarkeit der Komplexe mit den negativ geladenen Liganden, die damit höhere Oxidationsstufen besser stabilisieren. Durch die Energie der ersten Anregung in den UV/Vis-Spektren der Nickel(II)-Komplexe ergibt sich die Ligandenfeldstärke der makrocyclischen Liganden etwa in der Reihenfolge H\(_2\)L-Me\(_2\)TAOC ≈ L-N\(_4\)Me\(_2\) > L-N\(_4\)\(^t\)Bu\(_2\) ≈ HL-TAAP-\(^t\)Bu\(_2\).