### Refine

#### Year of publication

- 1999 (73) (remove)

#### Document Type

- Article (73) (remove)

#### Keywords

- AG-RESY (6)
- HANDFLEX (5)
- PARO (5)
- Network Protocols (2)
- Requirements/Specifications (2)
- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)

#### Faculty / Organisational entity

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

The semantics of everyday language and the semanticsof its naive translation into classical first-order language consider-ably differ. An important discrepancy that is addressed in this paperis about the implicit assumption what exists. For instance, in thecase of universal quantification natural language uses restrictions andpresupposes that these restrictions are non-empty, while in classi-cal logic it is only assumed that the whole universe is non-empty.On the other hand, all constants mentioned in classical logic arepresupposed to exist, while it makes no problems to speak about hy-pothetical objects in everyday language. These problems have beendiscussed in philosophical logic and some adequate many-valuedlogics were developed to model these phenomena much better thanclassical first-order logic can do. An adequate calculus, however, hasnot yet been given. Recent years have seen a thorough investigationof the framework of many-valued truth-functional logics. UnfortuADnately, restricted quantifications are not truth-functional, hence theydo not fit the framework directly. We solve this problem by applyingrecent methods from sorted logics.

In the scalar case one knows that a complex normalized function of boundedvariation \(\phi\) on \([0,1]\) defines a unique complex regular Borel measure\(\mu\) on \([0,1]\). In this note we show that this is no longer true in generalin the vector valued case, even if \(\phi\) is assumed to be continuous. Moreover, the functions \(\phi\) which determine a countably additive vectormeasure \(\mu\) are characterized.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago, but there has not been a satisfact-ory mechanization. Recent years have seen a thorough investigation ofthe framework of many-valued truth-functional logics. However, strongKleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problemby applying recent methods from sorted logics. This paper presents atableau calculus that combines the proper treatment of partial functionswith the efficiency of sorted calculi.

A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

INRECA offers tools and methods for developing, validating, and maintaining classification, diagnosis and decision support systems. INRECA's basic technologies are inductive and case-based reasoning [9]. INRECA fully integrates [2] both techniques within one environment and uses the respective advantages of both technologies. Its object-oriented representation language CASUEL [10, 3] allows the definition of complex case structures, relations, similarity measures, as well as background knowledge to be used for adaptation. The objectoriented representation language makes INRECA a domain independent tool for its destined kind of tasks. When problems are solved via case-based reasoning, the primary kind of knowledge that is used during problem solving is the very specific knowledge contained in the cases. However, in many situations this specific knowledge by itself is not sufficient or appropriate to cope with all requirements of an application. Very often, background knowledge is available and/or necessary to better explore and interpret the available cases [1]. Such general knowledge may state dependencies between certain case features and can be used to infer additional, previously unknown features from the known ones.

In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.

Extending the planADbased paradigm for auto-mated theorem proving, we developed in previ-ous work a declarative approach towards rep-resenting methods in a proof planning frame-work to support their mechanical modification.This paper presents a detailed study of a classof particular methods, embodying variations ofa mathematical technique called diagonaliza-tion. The purpose of this paper is mainly two-fold. First we demonstrate that typical math-ematical methods can be represented in ourframework in a natural way. Second we illus-trate our philosophy of proof planning: besidesplanning with a fixed repertoire of methods,metaADmethods create new methods by modify-ing existing ones. With the help of three differ-ent diagonalization problems we present an ex-ample trace protocol of the evolution of meth-ods: an initial method is extracted from a par-ticular successful proof. This initial method isthen reformulated for the subsequent problems,and more general methods can be obtained byabstracting existing methods. Finally we comeup with a fairly abstract method capable ofdealing with all the three problems, since it cap-tures the very key idea of diagonalization.

The development of complex software systems is driven by many diverse and sometimes contradictory requirements such as correctness and maintainability of resulting products, development costs, and time-to-market. To alleviate these difficulties, we propose a development method for distributed systems that integrates different basic approaches. First, it combines the use of the formal description technique SDL with software reuse concepts. This results in the definition of a use-case driven, incremental development method with SDL-patterns as the main reusable artifacts. Experience with this approach has shown that there are several other factors of influence, such as the quality of reuse artifacts or the experience of the development team. Therefore, we further combined our SDL-pattern approach with an improvement methodology known from the area of experimental software engineering. In order to demonstrate the validity of this integrating approach, we sketch some representative outcomings of a case study.

Several activities around the world aim at integrating object-oriented data models with relational ones in order to improve database management systems. As a first result of these activities, object-relational database management systems (ORDBMS) are already commercially available and, simultaneously, are subject to several research projects. This (position) paper reports on our activities in exploiting object-relational database technology for establishing repository manager functionality supporting software engineering (SE) processes. We argue that some of the key features of ORDBMS can directly be exploited to fulfill many of the needs of SE processes. Thus, ORDBMS, as we think, are much better suited to support SE applications than any others. Nevertheless, additional functionality, e. g., providing adequate version management, is required in order to gain a completely satisfying SE repository. In order to remain flexible, we have developed a generative approach for providing this additional functionality. It remains to be seen whether this approach, in turn, can effectively exploit ORDBMS features. This paper, therefore, wants to show that ORDBMS can substantially contribute to both establishing and running SE repositories.

Many mathematical proofs are hard to generate forhumans and even harder for automated theoremprovers. Classical techniques of automated theoremproving involve the application of basic rules, of built-in special procedures, or of tactics. Melis (Melis 1993)introduced a new method for analogical reasoning inautomated theorem proving. In this paper we showhow the derivational analogy replay method is relatedand extended to encompass analogy-driven proof planconstruction. The method is evaluated by showing theproof plan generation of the Pumping Lemma for con-text free languages derived by analogy with the proofplan of the Pumping Lemma for regular languages.This is an impressive evaluation test for the analogicalreasoning method applied to automated theorem prov-ing, as the automated proof of this Pumping Lemmais beyond the capabilities of any of the current auto-mated theorem provers.

Static and dynamic properties of patterned magnetic permalloy films are investigated. In square lattices of circular shaped permalloy dots an anisotropic coupling mechanism has been found, which is identified as being due to intrinsically unsaturated parts of the dots caused by spatial variations of demagnetizing field. In arrays of magnetic wires a quantization of the surface spin wave mode in several dispersionless modes is observed and quantitatively described. For large wavevectors the frequency separation between the modes becomes smaller and the frequencies converge to the dispersion of the dipole-exchange surface mode of a continuous film.

An unusual interlayer coupling, recently discovered in layered magnetic systems, is analysed from the experimental and theoretical points of view. This coupling favours the 90° orientation of the magnetization of the adjacent magnetic films. It can be phenomenologically described by a term in the energy expression, which is biquadratic with respect to the magnetizations of the two films. The main experimental findings, as well as the theoretical models, explaining the phenomenon are discussed.

The paper studies metastable states of a Bloch electron in the presence of external ac and dc fields. Provided resonance condition between period of the driving frequency and the Bloch period, the complex quasienergies are numerically calculated for two qualitatively different regimes (quasiregular and chaotic) of the system dynamics. For the chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is demonstrated to be a kind of quantum interference phenomenon sensitive to the resonance condition.

The paper studies quantum states of a Bloch particle in presence of external ac and dc fields. Provided the period of the ac field and the Bloch period are commensurate, an effective scattering matrix is introduced, the complex poles of which are the system quasienergy spectrum. The statistics of the resonance width and the Wigner delay time shows a close relation of the problem to random matrix theory of chaotic scattering.

In this paper, a framework for globally distributed soft-ware development and management environments, whichwe call Booster is presented. Additionally, the first experi-ences with WebMake, an application developed to serve asan experimental platform for a software developmentenvironment based on the World Wide Web and theBooster framework is introduced. Booster encompasses thebasic building blocks and mechanisms necessary tosupport a truly cooperative distributed softwaredevelopment from the very beginning to the last steps in asoftware life cycle. It is thus a precursor of the GlobalSoftware Highway, in which providers and users can meetfor the development, management, exchange and usage ofall kind of software.

Die Realisierung zunehmend komplexer Softwareprojekte erfordert das direkte und indirekteZusammenwirken einer immer größer werdenden Zahl von Personen. Die dafür benötigte Infrastrukturist mit der zunehmenden globalen Rechner-Vernetzung bereits vorhanden, doch wird ihr Potential vonherkömmlichen Werkzeugen in der Regel bei weitem nicht ausgeschöpft. Das in diesem Artikelvorgestellte Rahmenmodell für Softwareentwicklung wurde explizit im Hinblick auf die globaleKooperation von Entwicklern entworfen. WebMake, eine auf diesem Modell basierende Software-entwicklungsumgebung, adressiert das Ziel seiner Einsetzbarkeit im globalen Maßstab durch dieVerwendung des World-Wide Web als Datenspeicherungs- und Kommunikationsinfrastruktur.

The static and spin wave properties of regular square lattices of magnetic dots of 0.5-2 microm dot diameter and 1-4 microm periodicity patterned in permalloy films have been investigated by Brillouin light scattering. The samples have been structured using x-ray lithography and ion beam etching. The Brillouin light scattering spectra reveal both surface and bulk spin wave modes. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. For the samples with smallest dot separation of 0.1 microm a fourfold in-plane magnetic anisotropy with the easy axis directed along the pattern diagonal is observed, indicating anisotropic coupling between the dots.

As global networks are being used by more and more people,they are becoming increasingly interesting for commercial appli-cations. The recent success and change in direction of the World-Wide Web is a clear indication for this. However, this success meta largely unprepared communications infrastructure. The Inter-net as an originally non-profit network did neither offer the secu-rity, nor the globally available accounting infrastructure byitself.These problems were addressed in the recent past, but in aseemingly ad-hoc manner. Several different accounting schemessensible for only certain types of commercial transactions havebeen developed, which either seem to neglect the problems ofscalability, or trade security for efficiency. Finally, some propos-als aim at achieving near perfect security at the expense of effi-ciency, thus rendering those systems to be of no practical use.In contrast, this paper presents a suitably configurable schemefor accounting in a general, widely distributed client/server envi-ronment. When developing the protocol presented in this paper,special attention has been paid to make this approach work wellin the future setting of high-bandwidth, high-latency internets.The developed protocol has been applied to a large-scale distrib-uted application, a WWW-based software development environ-ment.

Let \(X\) be a Banach lattice. Necessary and sufficient conditions for a linear operator \(A:D(A) \to X\), \(D(A)\subseteq X\), to be of positive \(C^0\)-scalar type are given. In addition, the question is discussed which conditions on the Banach lattice imply that every operator of positive \(C^0\)-scalar type is necessarily of positive scalar type.

This paper addresses the decomposition of proofs as a means of constructingmethods in plan-based automated theorem proving. It shows also, howdecomposition can beneficially be applied in theorem proving by analogy.Decomposition is also useful for human-style proof presentation. We proposeseveral decomposition techniques that were found to be useful in automatedtheorem proving and give examples of their application.

Deduktionssysteme
(1999)

Epitaxial growth of metastable Pd(001) at high deposition temperatures up to a critical thickness of 6 monolayers on bcc-Fe(001) is reported, the critical thickness being depending dramatically on the deposition temperature. For larger thicknesses the Pd film undergoes a roughening transition with strain relaxation by forming a top polycrystalline layer. These results allow to make a correlation between previ-ously reported unusual magnetic properties of Fe/Pd double layers and the crystallographic structure of the Pd overlayer.

Mn-Si-C alloy films are prepared by e-beam coevaporation onto a Si substrate held at 600 °C. Ferromagnetism is observed below T = (360 +/- 5) K with SQUID magnetometry and magneto-optical Kerr effect. This is the highest Curie temperature T yet observed for a Mn-based alloy. Although the composition determined by Auger depth profiling varies appreciably for different films, their T is the same indicating that ferromagnetism is caused by an alloy of well-defined composition independent of precipitations.

Higher-Order Tableaux
(1999)

Even though higher-order calculi for automated theorem prov-ing are rather old, tableau calculi have not been investigated yet. Thispaper presents two free variable tableau calculi for higher-order logicthat use higher-order unification as the key inference procedure. Thesecalculi differ in the treatment of the substitutional properties of equival-ences. The first calculus is equivalent in deductive power to the machine-oriented higher-order refutation calculi known from the literature, whereasthe second is complete with respect to Henkin's general models.

This paper analyzes how mathematicians prove the-orems. The analysis is based upon several empiricalsources such as reports of mathematicians and math-ematical proofs by analogy. In order to combine thestrength of traditional automated theorem provers withhuman-like capabilities, the questions arise: Whichproblem solving strategies are appropriate? Which rep-resentations have to be employed? As a result of ouranalysis, the following reasoning strategies are recog-nized: proof planning with partially instantiated meth-ods, structuring of proofs, the transfer of subproofs andof reformulated subproofs. We discuss the represent-ation of a component of these reasoning strategies, aswell as its properties. We find some mechanisms neededfor theorem proving by analogy, that are not providedby previous approaches to analogy. This leads us to acomputational representation of new components andprocedures for automated theorem proving systems.

In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

We present two techniques for reasoning from cases to solve classification tasks: Induction and case-based reasoning. We contrast the two technologies (that are often confused) and show how they complement each other. Based on this, we describe how they are integrated in one single platform for reasoning from cases: The Inreca system.

This paper describes how knowledge-based techniques can be used to overcome problems of workflow management in engineering applications. Using explicit process and product models as a basis for a workflow interpreter allows to alternate planning and execution steps, resulting in an increased flexibility of project coordination and enactment. To gain the full advantages of this flexibility, change processes have to be supported by the system. These require an improved traceability of decisions and have to be based on dependency management and change notification mechanisms. Our methods and techniques are illustrated by two applications: Urban land-use planning and software process modeling.

We investigate the temperature dependence of the magnetization reversal process and of spinwaves in epi-taxially grown (001)-oriented [Fem/Aun]30 multilayers (m = 1, 2; n = 1- 6). Both polar magneto-optic Kerrr effect and Brillouin light scattering measurements reveal that all investigated multilayers, apart from the [Fe2/Au1]30-sample, are magnetized perpendicular to the film plane. The out-of-plane anisotropy constants are obtained. At high temperature, the magnetization curves are well described by an alternating stripe domain structure with free mobile domain walls, and at low temperature by a thermal activation model for the domain wall motion.

The task of handling non-rigid one-dimensional objects by a robot manipulation system is investigated. To distinguish between different non-rigid object behaviors, five classes of deformable objects from a robotic point of view are proposed. Additionally, an enumeration of all possible contact states of one-dimensional objects with polyhedral obstacles is provided. Finally, the qualitative motion behavior of linear objects is analyzed for stable point contacts. Experiments with different materials validate the analytical results.

Manipulating deformable linear objects - Vision-based recognition of contact state transitions -
(1999)

A new and systematic approach to machine vision-based robot manipulation of deformable (non-rigid) linear objects is introduced. This approach reduces the computational needs by using a simple state-oriented model of the objects. These states describe the relation of the object with respect to an obstacle and are derived from the object image and its features. Therefore, the object is segmented from a standard video frame using a fast segmentation algorithm. Several object features are presented which allow the state recognition of the object while being manipulated by the robot.

This paper deals with the robust manipulation of deformable linear objects such as hoses or wires. We propose manipulation based on thequalitative contact state between the deformable workpiece and a rigid environment. First, we give an enumeration of possible contact states and discuss the main characteristics of each state. Second, we investigate the transitions which are possible between the contact states and derive criteria and conditions for each of them. Finally, we apply the concept of contact states and state transitions to the description of a typical assembly task.

In this paper, we investigate the efficient simulation of deformable linear objects. Based on the state of the art, we extend the principle of minimizing the potential energy by considering plastic deformation and describe a novel approach for treating workpiece dynamics. The major influence factors on precision and computation time are identified and investigated experimentally. Finally, we discuss the usage of parallel processing in order to reduce the computation time.

A new problem for the automated off-line programming of industrial robot application is investigated. The Multi-Goal Path Planning is to find the collision-free path connecting a set of goal poses and minimizing e.g. the total path length. Our solution is based on an earlier reported path planner for industrial robot arms with 6 degrees-of-freedom in an on-line given 3D environment. To control the path planner, four different goal selection methods are introduced and compared. While the Random and the Nearest Pair Selection methods can be used with any path planner, the Nearest Goal and the Adaptive Pair Selection method are favorable for our planner. With the latter two goal selection methods, the Multi-Goal Path Planning task can be significantly accelerated, because they are able to automatically solve the simplest path planning problems first. Summarizing, compared to Random or Nearest Pair Selection, this new Multi-Goal Path Planning approach results in a further cost reduction of the programming phase.

We show how to buildup mathematical knowledge bases usingframes. We distinguish three differenttypes of knowledge: axioms, definitions(for introducing concepts like "set" or"group") and theorems (for relating theconcepts). The consistency of such know-ledge bases cannot be proved in gen-eral, but we can restrict the possibilit-ies where inconsistencies may be impor-ted to very few cases, namely to the oc-currence of axioms. Definitions and the-orems should not lead to any inconsisten-cies because definitions form conservativeextensions and theorems are proved to beconsequences.

In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.

The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.

This paper deals with the problem of picking-up deformable linear workpieces such as cables or ropes with an industrial robot. First, we give a motivation and problem definition. Based on a brief conceptual discussion of possible approaches we derive an algorithm for picking-up hanging deformable linear objects using two light barriers as sensor system. For this hardware, a skill-based approach is described and the parameters and major influence factors are discussed. In an experi- mental study, the feasibility and reliability under diverse conditions are investigated. The algorithm is found to be very reliable, if certain boundary conditions are met.

Planning Argumentative Texts
(1999)

This paper presents PROVERB a text planner forargumentative texts. PROVERB's main feature isthat it combines global hierarchical planning and un-planned organization of text with respect to local de-rivation relations in a complementary way. The formersplits the task of presenting a particular proof intosubtasks of presenting subproofs. The latter simulateshow the next intermediate conclusion to be presentedis chosen under the guidance of the local focus.

In this article we formally describe a declarative approach for encoding plan operatorsin proof planning, the so-called methods. The notion of method evolves from the much studiedconcept tactic and was first used by Bundy. While significant deductive power has been achievedwith the planning approach towards automated deduction, the procedural character of the tacticpart of methods, however, hinders mechanical modification. Although the strength of a proofplanning system largely depends on powerful general procedures which solve a large class ofproblems, mechanical or even automated modification of methods is nevertheless necessary forat least two reasons. Firstly methods designed for a specific type of problem will never begeneral enough. For instance, it is very difficult to encode a general method which solves allproblems a human mathematician might intuitively consider as a case of homomorphy. Secondlythe cognitive ability of adapting existing methods to suit novel situations is a fundamentalpart of human mathematical competence. We believe it is extremely valuable to accountcomputationally for this kind of reasoning.The main part of this article is devoted to a declarative language for encoding methods,composed of a tactic and a specification. The major feature of our approach is that the tacticpart of a method is split into a declarative and a procedural part in order to enable a tractableadaption of methods. The applicability of a method in a planning situation is formulatedin the specification, essentially consisting of an object level formula schema and a meta-levelformula of a declarative constraint language. After setting up our general framework, wemainly concentrate on this constraint language. Furthermore we illustrate how our methodscan be used in a Strips-like planning framework. Finally we briefly illustrate the mechanicalmodification of declaratively encoded methods by so-called meta-methods.

This paper deals with the reference choices involved in thegeneration of argumentative text. A piece of argument-ative text such as the proof of a mathematical theoremconveys a sequence of derivations. For each step of de-rivation, the premises (previously conveyed intermediateresults) and the inference method (such as the applica-tion of a particular theorem or definition) must be madeclear. The appropriateness of these references cruciallyaffects the quality of the text produced.Although not restricted to nominal phrases, our refer-ence decisions are similar to those concerning nominalsubsequent referring expressions: they depend on theavailability of the object referred to within a context andare sensitive to its attentional hierarchy . In this paper,we show how the current context can be appropriatelysegmented into an attentional hierarchy by viewing textgeneration as a combination of planned and unplannedbehavior, and how the discourse theory of Reichmann canbe adapted to handle our special reference problem.

A computer control for a Sandercock-type multipath tandem Fabry-Perot interferometer is described, which offers many advantages over conventionally used analog control: The range of stability is increased due to active control of the laser light intensity and the mirror dither amplitude. The alignment is fully automated enabling start of a measurement within a minute after start of align, including optionally finding the optimum focus on the sample. The software control enables a programmable series of measurements with control of, e.g., the position and rotation of the sample, the angle of light incidence, the sample temperature, or the strength and direction of an applied magnetic field. Built-in fitting routines allow for a precise determination of frequency positions of excitation peaks combined with increased frequency accuracy due to a correction of a residual nonlinearity of the mirror stage drive.

Quantum Chaos
(1999)

The study of dynamical quantum systems, which are classically chaotic, and the search for quantum manifestations of classical chaos, require large scale numerical computations. Special numerical techniques developed and applied in such studies are discussed: The numerical solution of the time-dependent Schr-odinger equation, the construction of quantum phase space densities, quantum dynamics in phase space, the use of phase space entropies for characterizing localization phenomena, etc. As an illustration, the dynamics of a driven one-dimensional anharmonic oscillator is studied, both classically and quantum mechanically. In addition, spectral properties and chaotic tunneling are addressed.

The hallmark of traditional Artificial Intelligence (AI) research is the symbolic representation and processing of knowledge. This is in sharp contrast to many forms of human reasoning, which to an extraordinary extent, rely on cases and (typical) examples. Although these examples could themselves be encoded into logic, this raises the problem of restricting the corresponding model classes to include only the intended models.There are, however, more compelling reasons to argue for a hybrid representa-tion based on assertions as well as examples. The problems of adequacy, availability of information, compactness of representation, processing complexity, and last but not least, results from the psychology of human reasoning, all point to the same conclusion: Common sense reasoning requires different knowledge sources and hybrid reasoning principles that combine symbolic as well as semantic-based inference. In this paper we address the problem of integrating semantic representations of examples into automateddeduction systems. The main contribution is a formal framework for combining sentential with direct representations. The framework consists of a hybrid knowledge base, made up of logical formulae on the one hand and direct representations of examples on the other, and of a hybrid reasoning method based on the resolution calculus. The resulting hybrid resolution calculus is shown to be sound and complete.

Most automated theorem provers suffer from the problem thatthey can produce proofs only in formalisms difficult to understand even forexperienced mathematicians. Effort has been made to reconstruct naturaldeduction (ND) proofs from such machine generated proofs. Although thesingle steps in ND proofs are easy to understand, the entire proof is usuallyat a low level of abstraction, containing too many tedious steps. To obtainproofs similar to those found in mathematical textbooks, we propose a newformalism, called ND style proofs at the assertion level , where derivationsare mostly justified by the application of a definition or a theorem. Aftercharacterizing the structure of compound ND proof segments allowing asser-tion level justification, we show that the same derivations can be achieved bydomain-specific inference rules as well. Furthermore, these rules can be rep-resented compactly in a tree structure. Finally, we describe a system calledPROVERB , which substantially shortens ND proofs by abstracting them tothe assertion level and then transforms them into natural language.