### Refine

#### Year of publication

- 1999 (73) (remove)

#### Document Type

- Article (73) (remove)

#### Keywords

- AG-RESY (6)
- HANDFLEX (5)
- PARO (5)
- Network Protocols (2)
- Requirements/Specifications (2)
- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)

#### Faculty / Organisational entity

Manipulating deformable linear objects - Vision-based recognition of contact state transitions -
(1999)

A new and systematic approach to machine vision-based robot manipulation of deformable (non-rigid) linear objects is introduced. This approach reduces the computational needs by using a simple state-oriented model of the objects. These states describe the relation of the object with respect to an obstacle and are derived from the object image and its features. Therefore, the object is segmented from a standard video frame using a fast segmentation algorithm. Several object features are presented which allow the state recognition of the object while being manipulated by the robot.

We present two techniques for reasoning from cases to solve classification tasks: Induction and case-based reasoning. We contrast the two technologies (that are often confused) and show how they complement each other. Based on this, we describe how they are integrated in one single platform for reasoning from cases: The Inreca system.

As global networks are being used by more and more people,they are becoming increasingly interesting for commercial appli-cations. The recent success and change in direction of the World-Wide Web is a clear indication for this. However, this success meta largely unprepared communications infrastructure. The Inter-net as an originally non-profit network did neither offer the secu-rity, nor the globally available accounting infrastructure byitself.These problems were addressed in the recent past, but in aseemingly ad-hoc manner. Several different accounting schemessensible for only certain types of commercial transactions havebeen developed, which either seem to neglect the problems ofscalability, or trade security for efficiency. Finally, some propos-als aim at achieving near perfect security at the expense of effi-ciency, thus rendering those systems to be of no practical use.In contrast, this paper presents a suitably configurable schemefor accounting in a general, widely distributed client/server envi-ronment. When developing the protocol presented in this paper,special attention has been paid to make this approach work wellin the future setting of high-bandwidth, high-latency internets.The developed protocol has been applied to a large-scale distrib-uted application, a WWW-based software development environ-ment.

In this paper, a framework for globally distributed soft-ware development and management environments, whichwe call Booster is presented. Additionally, the first experi-ences with WebMake, an application developed to serve asan experimental platform for a software developmentenvironment based on the World Wide Web and theBooster framework is introduced. Booster encompasses thebasic building blocks and mechanisms necessary tosupport a truly cooperative distributed softwaredevelopment from the very beginning to the last steps in asoftware life cycle. It is thus a precursor of the GlobalSoftware Highway, in which providers and users can meetfor the development, management, exchange and usage ofall kind of software.

Die Realisierung zunehmend komplexer Softwareprojekte erfordert das direkte und indirekteZusammenwirken einer immer größer werdenden Zahl von Personen. Die dafür benötigte Infrastrukturist mit der zunehmenden globalen Rechner-Vernetzung bereits vorhanden, doch wird ihr Potential vonherkömmlichen Werkzeugen in der Regel bei weitem nicht ausgeschöpft. Das in diesem Artikelvorgestellte Rahmenmodell für Softwareentwicklung wurde explizit im Hinblick auf die globaleKooperation von Entwicklern entworfen. WebMake, eine auf diesem Modell basierende Software-entwicklungsumgebung, adressiert das Ziel seiner Einsetzbarkeit im globalen Maßstab durch dieVerwendung des World-Wide Web als Datenspeicherungs- und Kommunikationsinfrastruktur.

In this paper, we compare the BERKOM globally ac-cessible services project (GLASS) with the well-knownWorld-Wide Web with respect to the ease of development,realization, and distribution of multimedia presentations.This comparison is based on the experiences we gainedwhen implementing a gateway between GLASS and theWorld-Wide Web. Since both systems are shown to haveobvious weaknesses, we are concluding this paper with apresentation of a better way to multimedia document en-gineering and distribution. This concept is based on awell-accepted approach to function-shipping in the Inter-net: the Java language, permitting for example a smoothintegration of GLASS92 MHEG objects and WWW HTMLpages within one common environment.

This paper describes how knowledge-based techniques can be used to overcome problems of workflow management in engineering applications. Using explicit process and product models as a basis for a workflow interpreter allows to alternate planning and execution steps, resulting in an increased flexibility of project coordination and enactment. To gain the full advantages of this flexibility, change processes have to be supported by the system. These require an improved traceability of decisions and have to be based on dependency management and change notification mechanisms. Our methods and techniques are illustrated by two applications: Urban land-use planning and software process modeling.

An unusual interlayer coupling, recently discovered in layered magnetic systems, is analysed from the experimental and theoretical points of view. This coupling favours the 90° orientation of the magnetization of the adjacent magnetic films. It can be phenomenologically described by a term in the energy expression, which is biquadratic with respect to the magnetizations of the two films. The main experimental findings, as well as the theoretical models, explaining the phenomenon are discussed.

Comprehensive reuse and systematic evolution of reuse artifacts as proposed by the Quality Improvement Paradigm (QIP) do not only require tool support for mere storage and retrieval. Rather, an integrated management of (potentially reusable) experience data as well as project-related data is needed. This paper presents an approach exploiting object-relational database technology to implement the QIP-driven reuse repository of the SFB 501. Requirements, concepts, and implementational aspects are discussed and illustrated through a running example, namely the reuse and continuous improvement of SDL patterns for developing distributed systems. Based on this discussion, we argue that object-relational database management systems (ORDBMS) are best suited to implement such a comprehensive reuse repository. It is demonstrated how this technology can be used to support all phases of a reuse process and the accompanying improvement cycle. Although the discussions of this paper are strongly related to the requirements of the SFB 501 experience base, the basic realization concepts, and, thereby, the applicability of ORDBMS, can easily be extended to similar applications, i. e., reuse repositories in general.

The development of complex software systems is driven by many diverse and sometimes contradictory requirements such as correctness and maintainability of resulting products, development costs, and time-to-market. To alleviate these difficulties, we propose a development method for distributed systems that integrates different basic approaches. First, it combines the use of the formal description technique SDL with software reuse concepts. This results in the definition of a use-case driven, incremental development method with SDL-patterns as the main reusable artifacts. Experience with this approach has shown that there are several other factors of influence, such as the quality of reuse artifacts or the experience of the development team. Therefore, we further combined our SDL-pattern approach with an improvement methodology known from the area of experimental software engineering. In order to demonstrate the validity of this integrating approach, we sketch some representative outcomings of a case study.

Mn-Si-C alloy films are prepared by e-beam coevaporation onto a Si substrate held at 600 °C. Ferromagnetism is observed below T = (360 +/- 5) K with SQUID magnetometry and magneto-optical Kerr effect. This is the highest Curie temperature T yet observed for a Mn-based alloy. Although the composition determined by Auger depth profiling varies appreciably for different films, their T is the same indicating that ferromagnetism is caused by an alloy of well-defined composition independent of precipitations.

The paper studies metastable states of a Bloch electron in the presence of external ac and dc fields. Provided resonance condition between period of the driving frequency and the Bloch period, the complex quasienergies are numerically calculated for two qualitatively different regimes (quasiregular and chaotic) of the system dynamics. For the chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is demonstrated to be a kind of quantum interference phenomenon sensitive to the resonance condition.

A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

The paper studies quantum states of a Bloch particle in presence of external ac and dc fields. Provided the period of the ac field and the Bloch period are commensurate, an effective scattering matrix is introduced, the complex poles of which are the system quasienergy spectrum. The statistics of the resonance width and the Wigner delay time shows a close relation of the problem to random matrix theory of chaotic scattering.

The Filter-Diagonalization Method is applied to time periodic Hamiltonians and used to find selectively the regular and chaotic quasienergies of a driven 2D rotor. The use of N cross-correlation probability amplitudes enables a selective calculation of the quasienergies from short time propagation to the time T (N). Compared to the propagation time T (1) which is required for resolving the quasienergy spectrum with the same accuracy from auto-correlation calculations, the cross-correlation time T (N) is shorter by the factor N , that is T (1) = N T (N).

Using an experience factory is one possible concept for supporting and improving reuse in software development. (i.e., reuse of products, processes, quality models, ...). In the context of the Sonderforschungsbereich 501: "Development of Large Systems with Generic methods" (SFB501), the Software Engineering Laboratory (SE Lab) runs such an experience factory as part of the infrastructure services it offers. The SE Lab also provides several tools to support the planning, developing, measuring, and analyzing activities of software development processes. Among these tools, the SE Lab runs and maintains an experience base, the SFB-EB. When an experience factory is utilized, support for experience base maintenance is an important issue. Furthermore, it might be interesting to evaluate experience base usage with regard to the number of accesses to certain experience elements stored in the database. The same holds for the usage of the tools provided by the SE LAB. This report presents a set of supporting tools that were designed to aid in these tasks. These supporting tools check the experience base's consistency and gather information on the usage of SFB-EB and the tools installed in the SE Lab. The results are processed periodically and displayed as HTML result reports (consistency checking) or bar charts (usage profiles).

The task of handling non-rigid one-dimensional objects by a robot manipulation system is investigated. To distinguish between different non-rigid object behaviors, five classes of deformable objects from a robotic point of view are proposed. Additionally, an enumeration of all possible contact states of one-dimensional objects with polyhedral obstacles is provided. Finally, the qualitative motion behavior of linear objects is analyzed for stable point contacts. Experiments with different materials validate the analytical results.

The static and spin wave properties of regular square lattices of magnetic dots of 0.5-2 microm dot diameter and 1-4 microm periodicity patterned in permalloy films have been investigated by Brillouin light scattering. The samples have been structured using x-ray lithography and ion beam etching. The Brillouin light scattering spectra reveal both surface and bulk spin wave modes. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. For the samples with smallest dot separation of 0.1 microm a fourfold in-plane magnetic anisotropy with the easy axis directed along the pattern diagonal is observed, indicating anisotropic coupling between the dots.

A computer control for a Sandercock-type multipath tandem Fabry-Perot interferometer is described, which offers many advantages over conventionally used analog control: The range of stability is increased due to active control of the laser light intensity and the mirror dither amplitude. The alignment is fully automated enabling start of a measurement within a minute after start of align, including optionally finding the optimum focus on the sample. The software control enables a programmable series of measurements with control of, e.g., the position and rotation of the sample, the angle of light incidence, the sample temperature, or the strength and direction of an applied magnetic field. Built-in fitting routines allow for a precise determination of frequency positions of excitation peaks combined with increased frequency accuracy due to a correction of a residual nonlinearity of the mirror stage drive.

We investigate the temperature dependence of the magnetization reversal process and of spinwaves in epi-taxially grown (001)-oriented [Fem/Aun]30 multilayers (m = 1, 2; n = 1- 6). Both polar magneto-optic Kerrr effect and Brillouin light scattering measurements reveal that all investigated multilayers, apart from the [Fe2/Au1]30-sample, are magnetized perpendicular to the film plane. The out-of-plane anisotropy constants are obtained. At high temperature, the magnetization curves are well described by an alternating stripe domain structure with free mobile domain walls, and at low temperature by a thermal activation model for the domain wall motion.

Static and dynamic properties of patterned magnetic permalloy films are investigated. In square lattices of circular shaped permalloy dots an anisotropic coupling mechanism has been found, which is identified as being due to intrinsically unsaturated parts of the dots caused by spatial variations of demagnetizing field. In arrays of magnetic wires a quantization of the surface spin wave mode in several dispersionless modes is observed and quantitatively described. For large wavevectors the frequency separation between the modes becomes smaller and the frequencies converge to the dispersion of the dipole-exchange surface mode of a continuous film.

Most automated theorem provers suffer from the problem thatthey can produce proofs only in formalisms difficult to understand even forexperienced mathematicians. Effort has been made to reconstruct naturaldeduction (ND) proofs from such machine generated proofs. Although thesingle steps in ND proofs are easy to understand, the entire proof is usuallyat a low level of abstraction, containing too many tedious steps. To obtainproofs similar to those found in mathematical textbooks, we propose a newformalism, called ND style proofs at the assertion level , where derivationsare mostly justified by the application of a definition or a theorem. Aftercharacterizing the structure of compound ND proof segments allowing asser-tion level justification, we show that the same derivations can be achieved bydomain-specific inference rules as well. Furthermore, these rules can be rep-resented compactly in a tree structure. Finally, we describe a system calledPROVERB , which substantially shortens ND proofs by abstracting them tothe assertion level and then transforms them into natural language.

Planning Argumentative Texts
(1999)

This paper presents PROVERB a text planner forargumentative texts. PROVERB's main feature isthat it combines global hierarchical planning and un-planned organization of text with respect to local de-rivation relations in a complementary way. The formersplits the task of presenting a particular proof intosubtasks of presenting subproofs. The latter simulateshow the next intermediate conclusion to be presentedis chosen under the guidance of the local focus.

This paper deals with the reference choices involved in thegeneration of argumentative text. A piece of argument-ative text such as the proof of a mathematical theoremconveys a sequence of derivations. For each step of de-rivation, the premises (previously conveyed intermediateresults) and the inference method (such as the applica-tion of a particular theorem or definition) must be madeclear. The appropriateness of these references cruciallyaffects the quality of the text produced.Although not restricted to nominal phrases, our refer-ence decisions are similar to those concerning nominalsubsequent referring expressions: they depend on theavailability of the object referred to within a context andare sensitive to its attentional hierarchy . In this paper,we show how the current context can be appropriatelysegmented into an attentional hierarchy by viewing textgeneration as a combination of planned and unplannedbehavior, and how the discourse theory of Reichmann canbe adapted to handle our special reference problem.

Most automated theorem provers suffer from the problemthat the resulting proofs are difficult to understand even for experiencedmathematicians. An effective communication between the system andits users, however, is crucial for many applications, such as in a mathematical assistant system. Therefore, efforts have been made to transformmachine generated proofs (e.g. resolution proofs) into natural deduction(ND) proofs. The state-of-the-art procedure of proof transformation fol-lows basically its completeness proof: the premises and the conclusionare decomposed into unit literals, then the theorem is derived by mul-tiple levels of proofs by contradiction. Indeterminism is introduced byheuristics that aim at the production of more elegant results. This inde-terministic character entails not only a complex search, but also leads tounpredictable results.In this paper we first study resolution proofs in terms of meaningful op-erations employed by human mathematicians, and thereby establish acorrespondence between resolution proofs and ND proofs at a more ab-stract level. Concretely, we show that if its unit initial clauses are CNFsof literal premises of a problem, a unit resolution corresponds directly toa well-structured ND proof segment that mathematicians intuitively un-derstand as the application of a definition or a theorem. The consequenceis twofold: First it enhances our intuitive understanding of resolutionproofs in terms of the vocabulary with which mathematicians talk aboutproofs. Second, the transformation process is now largely deterministicand therefore efficient. This determinism also guarantees the quality ofresulting proofs.

In this article we formally describe a declarative approach for encoding plan operatorsin proof planning, the so-called methods. The notion of method evolves from the much studiedconcept tactic and was first used by Bundy. While significant deductive power has been achievedwith the planning approach towards automated deduction, the procedural character of the tacticpart of methods, however, hinders mechanical modification. Although the strength of a proofplanning system largely depends on powerful general procedures which solve a large class ofproblems, mechanical or even automated modification of methods is nevertheless necessary forat least two reasons. Firstly methods designed for a specific type of problem will never begeneral enough. For instance, it is very difficult to encode a general method which solves allproblems a human mathematician might intuitively consider as a case of homomorphy. Secondlythe cognitive ability of adapting existing methods to suit novel situations is a fundamentalpart of human mathematical competence. We believe it is extremely valuable to accountcomputationally for this kind of reasoning.The main part of this article is devoted to a declarative language for encoding methods,composed of a tactic and a specification. The major feature of our approach is that the tacticpart of a method is split into a declarative and a procedural part in order to enable a tractableadaption of methods. The applicability of a method in a planning situation is formulatedin the specification, essentially consisting of an object level formula schema and a meta-levelformula of a declarative constraint language. After setting up our general framework, wemainly concentrate on this constraint language. Furthermore we illustrate how our methodscan be used in a Strips-like planning framework. Finally we briefly illustrate the mechanicalmodification of declaratively encoded methods by so-called meta-methods.

Unification in an Extensional Lambda Calculus with Ordered Function Sorts and Constant Overloading
(1999)

We develop an order-sorted higher-order calculus suitable forautomatic theorem proving applications by extending the extensional simplytyped lambda calculus with a higher-order ordered sort concept and constantoverloading. Huet's well-known techniques for unifying simply typed lambdaterms are generalized to arrive at a complete transformation-based unificationalgorithm for this sorted calculus. Consideration of an order-sorted logicwith functional base sorts and arbitrary term declarations was originallyproposed by the second author in a 1991 paper; we give here a correctedcalculus which supports constant rather than arbitrary term declarations, aswell as a corrected unification algorithm, and prove in this setting resultscorresponding to those claimed there.

We show how to buildup mathematical knowledge bases usingframes. We distinguish three differenttypes of knowledge: axioms, definitions(for introducing concepts like "set" or"group") and theorems (for relating theconcepts). The consistency of such know-ledge bases cannot be proved in gen-eral, but we can restrict the possibilit-ies where inconsistencies may be impor-ted to very few cases, namely to the oc-currence of axioms. Definitions and the-orems should not lead to any inconsisten-cies because definitions form conservativeextensions and theorems are proved to beconsequences.

In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.

Extending existing calculi by sorts is astrong means for improving the deductive power offirst-order theorem provers. Since many mathemat-ical facts can be more easily expressed in higher-orderlogic - aside the greater power of higher-order logicin principle - , it is desirable to transfer the advant-ages of sorts in the first-order case to the higher-ordercase. One possible method for automating higher-order logic is the translation of problem formulationsinto first-order logic and the usage of first-order the-orem provers. For a certain class of problems thismethod can compete with proving theorems directlyin higher-order logic as for instance with the TPStheorem prover of Peter Andrews or with the Nuprlproof development environment of Robert Constable.There are translations from unsorted higher-order lo-gic based on Church's simple theory of types intomany-sorted first-order logic, which are sound andcomplete with respect to a Henkin-style general mod-els semantics. In this paper we extend correspond-ing translations to translations of order-sorted higher-order logic into order-sorted first-order logic, thus weare able to utilize corresponding first-order theoremprover for proving higher-order theorems. We do notuse any (lambda)-expressions, therefore we have to add so-called comprehension axioms, which a priori makethe procedure well-suited only for essentially first-order theorems. However, in practical applicationsof mathematics many theorems are essentially first-order and as it seems to be the case, the comprehen-sion axioms can be mastered too.

In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

An important research problem is the incorporation of "declarative" knowledge into an automated theorem prover that can be utilized in the search for a proof. An interesting pro-posal in this direction is Alan Bundy's approach of using explicit proof plans that encapsulatethe general form of a proof and is instantiated into a particular proof for the case at hand. Wegive some examples that show how a "declarative" highlevel description of a proof can be usedto find proofs of apparently "similiar" theorems by analogy. This "analogical" information isused to select the appropriate axioms from the database so that the theorem can be proved.This information is also used to adjust some options of a resolution theorem prover. In orderto get a powerful tool it is necessary to develop an epistemologically appropriate language todescribe proofs, for which a large set of examples should be used as a testbed. We presentsome ideas in this direction.

Extending the planADbased paradigm for auto-mated theorem proving, we developed in previ-ous work a declarative approach towards rep-resenting methods in a proof planning frame-work to support their mechanical modification.This paper presents a detailed study of a classof particular methods, embodying variations ofa mathematical technique called diagonaliza-tion. The purpose of this paper is mainly two-fold. First we demonstrate that typical math-ematical methods can be represented in ourframework in a natural way. Second we illus-trate our philosophy of proof planning: besidesplanning with a fixed repertoire of methods,metaADmethods create new methods by modify-ing existing ones. With the help of three differ-ent diagonalization problems we present an ex-ample trace protocol of the evolution of meth-ods: an initial method is extracted from a par-ticular successful proof. This initial method isthen reformulated for the subsequent problems,and more general methods can be obtained byabstracting existing methods. Finally we comeup with a fairly abstract method capable ofdealing with all the three problems, since it cap-tures the very key idea of diagonalization.

In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.

The semantics of everyday language and the semanticsof its naive translation into classical first-order language consider-ably differ. An important discrepancy that is addressed in this paperis about the implicit assumption what exists. For instance, in thecase of universal quantification natural language uses restrictions andpresupposes that these restrictions are non-empty, while in classi-cal logic it is only assumed that the whole universe is non-empty.On the other hand, all constants mentioned in classical logic arepresupposed to exist, while it makes no problems to speak about hy-pothetical objects in everyday language. These problems have beendiscussed in philosophical logic and some adequate many-valuedlogics were developed to model these phenomena much better thanclassical first-order logic can do. An adequate calculus, however, hasnot yet been given. Recent years have seen a thorough investigationof the framework of many-valued truth-functional logics. UnfortuADnately, restricted quantifications are not truth-functional, hence theydo not fit the framework directly. We solve this problem by applyingrecent methods from sorted logics.

Typical instances, that is, instances that are representative for a particular situ-ation or concept, play an important role in human knowledge representationand reasoning, in particular in analogical reasoning. This wellADknown obser-vation has been a motivation for investigations in cognitive psychology whichprovide a basis for our characterization of typical instances within conceptstructures and for a new inference rule for justified analogical reasoning withtypical instances. In a nutshell this paper suggests to augment the proposi-tional knowledge representation system by a non-propositional part consistingof concept structures which may have directly represented instances as ele-ments. The traditional reasoning system is extended by a rule for justifiedanalogical inference with typical instances using information extracted fromboth knowledge representation subsystems.

The hallmark of traditional Artificial Intelligence (AI) research is the symbolic representation and processing of knowledge. This is in sharp contrast to many forms of human reasoning, which to an extraordinary extent, rely on cases and (typical) examples. Although these examples could themselves be encoded into logic, this raises the problem of restricting the corresponding model classes to include only the intended models.There are, however, more compelling reasons to argue for a hybrid representa-tion based on assertions as well as examples. The problems of adequacy, availability of information, compactness of representation, processing complexity, and last but not least, results from the psychology of human reasoning, all point to the same conclusion: Common sense reasoning requires different knowledge sources and hybrid reasoning principles that combine symbolic as well as semantic-based inference. In this paper we address the problem of integrating semantic representations of examples into automateddeduction systems. The main contribution is a formal framework for combining sentential with direct representations. The framework consists of a hybrid knowledge base, made up of logical formulae on the one hand and direct representations of examples on the other, and of a hybrid reasoning method based on the resolution calculus. The resulting hybrid resolution calculus is shown to be sound and complete.

A straightforward formulation of a mathematical problem is mostly not ad-equate for resolution theorem proving. We present a method to optimize suchformulations by exploiting the variability of first-order logic. The optimizingtransformation is described as logic morphisms, whose operationalizations aretactics. The different behaviour of a resolution theorem prover for the sourceand target formulations is demonstrated by several examples. It is shown howtactical and resolution-style theorem proving can be combined.

Deduktionssysteme
(1999)

Higher-Order Tableaux
(1999)

Even though higher-order calculi for automated theorem prov-ing are rather old, tableau calculi have not been investigated yet. Thispaper presents two free variable tableau calculi for higher-order logicthat use higher-order unification as the key inference procedure. Thesecalculi differ in the treatment of the substitutional properties of equival-ences. The first calculus is equivalent in deductive power to the machine-oriented higher-order refutation calculi known from the literature, whereasthe second is complete with respect to Henkin's general models.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago, but there has not been a satisfact-ory mechanization. Recent years have seen a thorough investigation ofthe framework of many-valued truth-functional logics. However, strongKleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problemby applying recent methods from sorted logics. This paper presents atableau calculus that combines the proper treatment of partial functionswith the efficiency of sorted calculi.

The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.