### Refine

#### Year of publication

#### Document Type

- Preprint (1184) (remove)

#### Is part of the Bibliography

- no (1184)

#### Keywords

- AG-RESY (17)
- Case-Based Reasoning (16)
- Mehrskalenanalyse (10)
- RODEO (10)
- Approximation (9)
- Fallbasiertes Schliessen (9)
- Wavelet (9)
- Boltzmann Equation (7)
- Inverses Problem (7)
- Location Theory (7)

#### Faculty / Organisational entity

- Fachbereich Mathematik (607)
- Fachbereich Informatik (346)
- Fachbereich Physik (159)
- Fraunhofer (ITWM) (19)
- Fachbereich Elektrotechnik und Informationstechnik (17)
- Fachbereich Maschinenbau und Verfahrenstechnik (17)
- Fachbereich Wirtschaftswissenschaften (15)
- Fachbereich Sozialwissenschaften (2)
- Universitätsbibliothek (2)

The Lagrangian field-antifield formalism of Batalin and Vilkovisky (BV) is used to investigate the application of the collec- tive coordinate method to soliton quantisation. In field theories with soliton solutions, the Gaussian fluctuation operator has zero modes due to the breakdown of global symmetries of the Lagrangian in the soliton solutions. It is shown how Noether identities and local symmetries of the Lagrangian arise when collective coordinates are introduced in order to avoid divergences related to these zero modes. This transformation to collective and fluctuation degrees of freedom is interpreted as a canonical transformation in the symplectic field-antifield space which induces a time-local gauge symmetry. Separating the corresponding Lagrangian path integral of the BV scheme in lowest order into harmonic quantum fluctuations and a free motion of the collective coordinate with the classical mass of the soliton, we show how the BV approach clarifies the relation between zero modes, collective coordinates, gauge invariance and the center- of-mass motion of classical solutions in quantum fields. Finally, we apply the procedure to the reduced nonlinear O(3) oe-model.^L

Based on experiences from an autonomous mobile robot project called MOBOT -III, we found hard realtime-constraints for the operating-system-design. ALBATROSS is "A flexible multi-tasking and realtime network-operatingsystem-kernel", not limited to mobile- robot-projects only, but which might be useful also wherever you have to guarantee a high reliability of a realtime-system. The focus in this article is on a communication-scheme fulfilling the demanded (hard realtime-) assurances although not implying time-delays or jitters on the critical informationchannels. The central chapters discuss a locking-free shared buffer management, without the need for interrupts and a way to arrange the communication architecture in order to produce minimal protocol-overhead and short cycle-times. Most of the remaining communication-capacity (if there is any) is used for redundant transfers, increasing the reliability of the whole system. ALBATROSS is actually implemented on a multi-processor VMEbus-system.

This paper refers to the problem of adaptability over an infinite period of time, regarding dynamic networks. A never ending flow of examples have to be clustered, based on a distance measure. The developed model is based on the self-organizing feature maps of Kohonen [6], [7] and some adaptations by Fritzke [3]. The problem of dynamic surface classification is embedded in the SPIN project, where sub-symbolic abstractions, based on a 3-d scanned environment is being done.

The problem to be discussed here, is the usage of neural network clustering techniques on a mobile robot, in order to build qualitative topologic environment maps. This has to be done in realtime, i.e. the internal world model has to be adapted by the flow of sensor- samples without the possibility to stop this data-flow.Our experiments are done in a simulation environment as well as on a robot, called ALICE.

Based on the experiences from an autonomous mobile robot project called MOBOT-III, we found hard realtime-constraints for the operating- system-design. ALBATROSS is "A flexible multi-tasking and realtime network-operating-system-kernel". The focusin this article is on a communication-scheme fulfilling the previous demanded assurances. The centralchapters discuss the shared buffer management and the way to design the communication architecture.Some further aspects beside the strict realtime-requirements like the possibilities to control and watch a running system, are mentioned. ALBATROSS is actually implemented on a multi-processor VMEbus-system.

Based on the idea of using topologic feature-mapsinstead of geometric environment maps in practical mobile robot tasks, we show an applicable way tonavigate on such topologic maps. The main features regarding this kind of navigation are: handling of very inaccurate position (and orientation) information as well as implicit modelling of complex kinematics during an adaptation phase. Due to the lack of proper a-priori knowledge, a re-inforcement based model is used for the translation of navigator commands to motor actions. Instead of employing a backpropagation network for the cen-tral associative memory module (attaching actionprobabilities to sensor situations resp. navigatorcommands) a much faster dynamic cell structure system based on dynamic feature maps is shown. Standard graph-search heuristics like A* are applied in the planning phase.

SPIN-NFDS Learning and Preset Knowledge for Surface Fusion - A Neural Fuzzy Decision System -
(1993)

The problem to be discussed in this paper may be characterized in short by the question: "Are these two surface fragments belonging together (i.e. belonging to the same surface)?" The presented techniques try to benefit from some predefined knowledge as well as from the possibility to refine and adapt this knowledge according to a (changing) real environment, resulting in a combination of fuzzy-decision systems and neural networks. The results are encouraging (fast convergence speed, high accuracy), and the model might be used for a wide range of applications. The general frame surrounding the work in this paper is the SPIN- project, where emphasis is on sub-symbolic abstractions, based on a 3-d scanned environment.

World models for mobile robots as introduced in many projects, are mostly redundant regarding similar situations detected in different places. The present paper proposes a method for dynamic generation of a minimal world model based on these redundancies. The technique is an extention of the qualitative topologic world modelling methods. As a central aspect the reliability regarding errortolerance and stability will be emphasized. The proposed technique demands very low constraints on the kind and quality of the employed sensors as well as for the kinematic precision of the utilized mobile platform. Hard realtime constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot "

This article will discuss a qualitative, topological and robust world-modelling technique with special regard to navigation-tasks for mobile robots operating in unknownenvironments. As a central aspect, the reliability regarding error-tolerance and stability will be emphasized. Benefits and problems involved in exploration, as well as in navigation tasks, are discussed. The proposed method demands very low constraints for the kind and quality of the employed sensors as well as for the kinematic precision of the utilized mobile platform. Hard real-time constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot

Self-localization in unknown environments respectively correlation of current and former impressions of the world is an essential ability for most mobile robots. The method,proposed in this article is the construction of a qualitative, topological world model as a basis for self-localization. As a central aspect the reliability regarding error-tolerance and stability will be emphasized. The proposed techniques demand very low constraints for the kind and quality of the employed sensors as well as for the kinematic precisionof the utilized mobile platform. Hard real-time constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot.

Visual Search has been investigated by many researchers inspired by the biological fact, that the sensory elements on the mammal retina are not equably distributed. Therefore the focus of attention (the area of the retina with the highest density of sensory elements) has to be directed in a way to efficiently gather data according to certain criteria. The work discussed in this article concentrates on applying a laser range finder instead of a silicon retina. The laser range finder is maximal focused at any time, but therefore a low resolution total-scene-image, available with camera-like devices from scratch on, cannot be used here. By adapting a couple of algorithms, the edge-scanning module steering the laser range finder is able to trace a detected edge. Based on the data scanned so far , two questions have to be answered. First: "Should the actual (edge-) scanning be interrupted in order to give another area of interest a chance of being investigated?" and second: "Where to start a new edge-scanning, after being interrupted?". These two decision-problems might be solved by a range of decision systems. The correctness of the decisions depends widely on the actual environment and the underlying rules may not be well initialized with a-priori knowledge. So we will present a version of a reinforcement decision system together with an overall scheme for efficiently controlling highly focused devices.

ALICE
(1994)

Abstract: We calculate exact analytical expressions for O(alpha s) 3-jet and O (alpha^2 s ) 4-jet cross sections in polarized deep inelastic lepton nucleon scattering. Introducing an invariant jet definition scheme, we present differential distributions of 3- and 4-jet cross sections in the basic kinematical variables x and W^2 as well as total jet cross sections and show their dependence on the chosen spin-dependent (polarized) parton distributions. Noticebly differences in the predictions are found for the two extreme choices, i.e. a large negative sea-quark density or a large positive gluon density. Therefore, it may be possible to discriminate between different parametrizations of polarized parton densities, and hence between the different physical pictures of the proton spin underlying these parametrizations.

We propose and study a strongly coupled PDE-ODE system with tissue-dependent degenerate diffusion and haptotaxis that can serve as a model prototype for cancer cell invasion through the
extracellular matrix. We prove the global existence of weak solutions and illustrate the model behaviour by numerical simulations for a two-dimensional setting.

We propose and study a strongly coupled PDE-ODE-ODE system modeling cancer cell invasion through a tissue network
under the go-or-grow hypothesis asserting that cancer cells can either move or proliferate. Hence our setting features
two interacting cell populations with their mutual transitions and involves tissue-dependent degenerate diffusion and
haptotaxis for the moving subpopulation. The proliferating cells and the tissue evolution are characterized by way of ODEs
for the respective densities. We prove the global existence of weak solutions and illustrate the model behaviour by
numerical simulations in a two-dimensional setting.

A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein con- densates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.

Conditional Compilation (CC) is frequently used as a variation mechanism in software product lines (SPLs). However, as a SPL evolves the variable code realized by CC erodes in the sense that it becomes overly complex and difficult to understand and maintain. As a result, the SPL productivity goes down and puts expected advantages more and more at risk. To investigate the variability erosion and keep the productivity above a sufficiently good level, in this paper we 1) investigate several erosion symptoms in an industrial SPL; 2) present a variability improvement process that includes two major improvement strategies. While one strategy is to optimize variable code within the scope of CC, the other strategy is to transition CC to a new variation mechanism called Parameterized Inclusion. Both of these two improvement strategies can be conducted automatically, and the result of CC optimization is provided. Related issues such as applicability and cost of the improvement are also discussed.

As a Software Product Line (SPL) evolves with increasing number of features and feature values, the feature correlations become extremely intricate, and the specifications of these correlations tend to be either incomplete or inconsistent with their realizations, causing misconfigurations in practice. In order to guide product configuration processes, we present a solution framework to recover complex feature correlations from existing product configurations. These correlations are further pruned automatically and validated by domain experts. During implementation, we use association mining techniques to automatically extract strong association rules as potential feature correlations. This approach is evaluated using a large-scale industrial SPL in the embedded system domain, and finally we identify a large number of complex feature correlations.

These lecture notes give a completely self-contained introduction to the control theory of linear time-invariant systems. No prior knowledge is requried apart from linear algebra and some basic familiarity with ordinary differential equations. Thus, the course is suited for students of mathematics in their second or third year, and for theoretically inclined engineering students. Because of its appealing simplicity and elegance, the behavioral approch has been adopted to a large extend. A short list of recommended text books on the subject has been added, as a suggestion for further reading.

Die Theorie der mehrdimensionalen Systeme ist ein relativ junges Forschungsgebiet innerhalb der Systemtheorie, erste Arbeiten stammen aus den 70er Jahren. Hauptmotiv für das Studium multidimensionaler Systeme war die Notwendigkeit einer Erweiterung der Theorie der digitalen Filter, die in der klassischen, eindimensionalen Signalverarbeitung (zeitabhängige Signale) Anwendung finden, auf den Bereich der Bildverarbeitung, also auf zweidimensionale Signale.; Die Vorlesung beschäftigt sich daher in ihrem ersten Teil mit skalaren zweidimensionalen Systemen und beschränkt sich im wesentlichen auf den linearen Fall. Untersucht werden zweidimensionale Filter, ihre wichtigsten Eigenschaften, Kausalität und Stabilität, sowie ihre Zustandsraum- realisierungen, etwa die Modelle von Roesser und Fornasini-Marchesini. Parallelen und Unterschiede zur eindimensionalen Systemtheorie werden betont.; Im zweiten Teil der Vorlesung werden allgemeine höherdimensionale und multivariable Systeme behandelt. Für diese Systeme erweist sich der von Jan Willems begründete Zugang zur Systemtheorie, der sogenannte behavioral approach, als zweckmäßig. Grundlegende Ideen dieses Ansatzes sowie eine der wichtigsten Methoden zum Rechnen mit Polynomen in mehreren Variablen, die Theorie der Gröbnerbasen, werden vorgestellt.

The paper focuses on the problem of trajectory planning of flexible redundant robot manipulators (FRM) in joint space. Compared to irredundant flexible manipulators, FRMs present additional possibilities in trajectory planning due to their kinematics redundancy. A trajectory planning method to minimize vibration of FRMs is presented based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as a planning variable. Quadrinomial and quintic polynomials are used to describe the segments which connect the initial, intermediate, and final points in joint space. The trajectory planning of FRMs is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. A case study shows that the method is applicable.

Point-to-Point Trajectory Planning of Flexible Redundant Robot Manipulators Using Genetic Algorithms
(2001)

The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRM based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable.

The vibration induced in a deformable object upon automatic handling by robot manipulators can often be bothersome. This paper presents a force/torque sensor-based method for handling deformable linear objects (DLOs) in a manner suitable to eliminate acute vibration. An adjustment-motion that can be attached to the end of an arbitrary end-effector's trajectory is employed to eliminate vibration of deformable objects. Differently from model-based methods, the presented sensor-based method does not employ any information from previous motions. The adjustment-motion is generated automatically by analyzing data from a force/torque sensor mounted on the robot wrist. Template matching technique is used to find out the matching point between the vibrational signal of the DLO and a template. Experiments are conducted to test the new method under various conditions. Results demonstrate the effectiveness of the sensor-based adjustment-motion.

Manipulating Deformable Linear Objects: Attachable Adjustment-Motions for Vibration Reduction
(2001)

This paper addresses the problem of handling deformable linear objects (DLOs) in a suitable way to avoid acute vibration. Different types of adjustment-motions that eliminate vibration of deformable objects and can be attached to the end of an arbitrary end-effector trajectory are presented. For describing the dynamics of deformable linear objects, the finite element method is used to derive the dynamic differential equations. Genetic algorithm is used to find the optimal adjustment motion for each simulation example. Experiments are conducted to verify the presented manipulating method.

Manipulating Deformable Linear Objects: Model-Based Adjustment-Motion for Vibration Reduction
(2001)

This paper addresses the problem of handling deformable linear objects (DLOs) in a suitable way to avoid acute vibration. An adjustment-motion that eliminates vibration of DLOs and can be attached to the end of any arbitrary end-effector's trajectory is presented, based on the concept of open-loop control. The presented adjustment-motion is a kind of agile end-effector motion with limited scope. To describe the dynamics of deformable linear objects, the finite element method is used to derive the dynamic differential equations. Genetic algorithm is used to find the optimal adjustment-motion for each simulation example. In contrast to previous approaches, the presented method can be treated as one of the manipulation skills and can be applied to different cases without major changes to the method.

Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

This article presents contributions in the field of path planning for industrial robots with 6 degrees of freedom. This work presents the results of our research in the last 4 years at the Institute for Process Control and Robotics at the University of Karlsruhe. The path planning approach we present works in an implicit and discretized C-space. Collisions are detected in the Cartesian workspace by a hierarchical distance computation. The method is based on the A* search algorithm and needs no essential off-line computation. A new optimal discretization method leads to smaller search spaces, thus speeding up the planning. For a further acceleration, the search was parallelized. With a static load distribution good speedups can be achieved. By extending the algorithm to a bidirectional search, the planner is able to automatically select the easier search direction. The new dynamic switching of start and goal leads finally to the multi-goal path planning, which is able to compute a collision-free path between a set of goal poses (e.g., spot welding points) while minimizing the total path length.

An interrupter for use in a daisy-chained VME bus interrupt system has beendesigned and implemented as an asynchronous sequential circuit. The concur-rency of the processes posed a design problem that was solved by means of asystematic design procedure that uses Petri nets for specifying system and in-terrupter behaviour, and for deriving a primitive flow table. Classical designand additional measures to cope with non-fundamental mode operation yieldeda coded state-machine representation. This was implemented on a GAL 22V10,chosen for its hazard-preventing structure and for rapid prototyping in studentlaboratories.

Phase velocities of surface acoustic waves in several boron nitride films were investigated by Brillouin light scattering. In the case of films with predominantly hexagonal crystal structure, grown under conditions close to the nucleation threshold of cubic BN, four independent elastic constants have been determined from the dispersion of the Rayleigh and the first Sezawa mode. The large elastic anisotropy of up to c11/c33 = 0.1 is attributed to a pronounced texture with the c-axes of the crystallites parallel to the film plane. In the case of cubic BN films the dispersion of the Rayleigh wave provides evidence for the existence of a more compliant layer at the substrate-film interface. The observed broadening of the Rayleigh mode is identified to be caused by the film morphology.

Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix.

We present a convenient notation for positive/negativeADconditional equations. Theidea is to merge rules specifying the same function by using caseAD, ifAD, matchAD, and letADexpressions.Based on the presented macroADruleADconstruct, positive/negativeADconditional equational specifiADcations can be written on a higher level. A rewrite system translates the macroADruleADconstructsinto positive/negativeADconditional equations.

We present an inference system for clausal theorem proving w.r.t. various kinds of inductivevalidity in theories specified by constructor-based positive/negative-conditional equations. The reductionrelation defined by such equations has to be (ground) confluent, but need not be terminating. Our con-structor-based approach is well-suited for inductive theorem proving in the presence of partially definedfunctions. The proposed inference system provides explicit induction hypotheses and can be instantiatedwith various wellfounded induction orderings. While emphasizing a well structured clear design of theinference system, our fundamental design goal is user-orientation and practical usefulness rather thantheoretical elegance. The resulting inference system is comprehensive and relatively powerful, but requiresa sophisticated concept of proof guidance, which is not treated in this paper.This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

We study the combination of the following already known ideas for showing confluence ofunconditional or conditional term rewriting systems into practically more useful confluence criteria forconditional systems: Our syntactic separation into constructor and non-constructor symbols, Huet's intro-duction and Toyama's generalization of parallel closedness for non-noetherian unconditional systems, theuse of shallow confluence for proving confluence of noetherian and non-noetherian conditional systems, theidea that certain kinds of limited confluence can be assumed for checking the fulfilledness or infeasibilityof the conditions of conditional critical pairs, and the idea that (when termination is given) only primesuperpositions have to be considered and certain normalization restrictions can be applied for the sub-stitutions fulfilling the conditions of conditional critical pairs. Besides combining and improving alreadyknown methods, we present the following new ideas and results: We strengthen the criterion for overlayjoinable noetherian systems, and, by using the expressiveness of our syntactic separation into constructorand non-constructor symbols, we are able to present criteria for level confluence that are not criteria forshallow confluence actually and also able to weaken the severe requirement of normality (stiffened withleft-linearity) in the criteria for shallow confluence of noetherian and non-noetherian conditional systems tothe easily satisfied requirement of quasi-normality. Finally, the whole paper also gives a practically usefuloverview of the syntactic means for showing confluence of conditional term rewriting systems.

In diesem Artikel diskutieren wir Anforderungen aus der Kreditwürdigkeitsprüfung und ihre Erfüllung mit Hilfe der Technik des fallbasierten Schliessens. Innerhalb eines allgemeinen Ansatzes zur fallbasierten Systementwicklung wird ein Lernverfahren zur Optimierung von Entscheidungskosten ausführlich beschrieben. Dieses Verfahren wird, auf der Basis realer Kundendaten, mit dem fallbasierten Entwicklungswerkzeug INRECA empirisch bewertet. Die Voraussetzungen für den Einsatz fallbasierter Systeme zur Kreditwürdigkeitsprüfung werden abschliessend dargestellt und ihre Nüt zlichkeit diskutiert.

Fallbasiertes Schliessen (engl.: Case-based Reasoning) hat in den vergangenen Jahren zunehmende Bedeutung für den praktischen Einsatz in realen Anwendungsbereichen erlangt. In dieser Arbeit werden zunächst die allgemeine Vorgehensweise und die verschiedenen Teilaufgaben des fallbasierten Schliessens vorgestellt. Anschliessend wird auf die charakteristischen Eigenschaften eines Anwendungsbereiches eingegangen und an der konkreten Aufgabe der Kreditwürdigkeitsprüfung die Realisierung eines fallbasierten Ansatzes in der Finanzwelt beschrieben.

Planabstraktion ist eine Möglichkeit, den Aufwand bei der Suche nach einem Plan zur Lösung eines konkreten Problems zu reduzieren. Hierbei wird eine konkrete Welt mit einer Problemstellung auf eine abstrakte Welt abgebildet. Die abstrakte Problemstellung wird nun in der abstrakten Welt gelöst. Durch die Rückabbildung der abstrakten Lösung auf eine konkrete Lösung erhält man eine Lösung für das konkrete Problem. Da die Anzahl der zur Lösung des abstrakten Problems benötigten Operationen geringer ist und die abstrakten Zustände und Operatoren einer weniger komplexen Beschreibung genügen, wird der Aufwand zur Suche einer konkreten Problemlösung reduziert.

Die Verwendung von existierenden Planungsansätzen zur Lösung von realen Anwendungs- problemen führt meist schnell zur Erkenntnis, dass eine vorliegende Problemstellung im Prinzip zwar lösbar ist, der exponentiell anwachsende Suchraum jedoch nur die Behandlung relativ kleiner Aufgabenstellungen erlaubt. Beobachtet man jedoch menschliche Planungsexperten, so sind diese in der Lage bei komplexen Problemen den Suchraum durch Abstraktion und die Verwendung bekannter Fallbeispiele als Heuristiken, entscheident zu verkleinern und so auch für schwierige Aufgabenstellungen zu einer akzeptablen Lösung zu gelangen. In dieser Arbeit wollen wir am Beispiel der Arbeitsplanung ein System vorstellen, das Abstraktion und fallbasierte Techniken zur Steuerung des Inferenzprozesses eines nichtlinearen, hierarchischen Planungssystems einsetzt und so die Komplexität der zu lösenden Gesamtaufgabe reduziert.

We describe a hybrid architecture supporting planning for machining workpieces. The archi- tecture is built around CAPlan, a partial-order nonlinear planner that represents the plan already generated and allows external control decision made by special purpose programs or by the user. To make planning more efficient, the domain is hierarchically modelled. Based on this hierarchical representation, a case-based control component has been realized that allows incremental acquisition of control knowledge by storing solved problems and reusing them in similar situations.

We describe a hybrid case-based reasoning system supporting process planning for machining workpieces. It integrates specialized domain dependent reasoners, a feature-based CAD system and domain independent planning. The overall architecture is build on top of CAPlan, a partial-order nonlinear planner. To use episodic problem solving knowledge for both optimizing plan execution costs and minimizing search the case-based control component CAPlan/CbC has been realized that allows incremental acquisition and reuse of strategical problem solving experience by storing solved problems as cases and reusing them in similar situations. For effective retrieval of cases CAPlan/CbC combines domain-independent and domain-specific retrieval mechanisms that are based on the hierarchical domain model and problem representation.

While most approaches to similarity assessment are oblivious of knowledge and goals, there is ample evidence that these elements of problem solving play an important role in similarity judgements. This paper is concerned with an approach for integrating assessment of similarity into a framework of problem solving that embodies central notions of problem solving like goals, knowledge and learning.

Contrary to symbolic learning approaches, which represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case- based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and case-based methods and show the interdependency between the measure used by a case-based algorithm and the target concept.