### Refine

#### Year of publication

#### Document Type

- Preprint (19)
- Report (1)
- Working Paper (1)

#### Language

- English (21) (remove)

#### Has Fulltext

- yes (21) (remove)

#### Keywords

- Decomposition and Reconstruction Schemes (2)
- Kugel (2)
- Kugelflächenfunktion (2)
- Mehrskalenanalyse (2)
- Spherical Wavelets (2)
- Sphäre (2)
- Up Functions (2)
- Wavelet (2)
- Wavelet-Analyse (2)
- uniqueness (2)

A General Hilbert Space Approach to Wavelets and Its Application in Geopotential Determination
(1999)

A general approach to wavelets is presented within a framework of a separable functional Hilbert space H. Basic tool is the construction of H-product kernels by use of Fourier analysis with respect to an orthonormal basis in H. Scaling function and wavelet are defined in terms of H-product kernels. Wavelets are shown to be 'building blocks' that decorrelate the data. A pyramid scheme provides fast computation. Finally, the determination of the earth's gravitational potential from single and multipole expressions is organized as an example of wavelet approximation in Hilbert space structure.

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.

By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.

The satellite-to-satellite tracking (SST) problems are characterized from mathematical point of view. Uniqueness results are formulated. Moreover, the basic relations are developed between (scalar) approximation of the earth's gravitational potential by "scalar basis systems" and (vectorial) approximation of the gravitational eld by "vectorial basis systems". Finally, the mathematical justication is given for approximating the external geopotential field by finite linear combinations of certain gradient fields (for example, gradient fields of multi-poles) consistent to a given set of SST data.

This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.

This review article reports current activities and recent progress on constructive approximation and numerical analysis in physical geodesy. The paper focuses on two major topics of interest, namely trial systems for purposes of global and local approximation and methods for adequate geodetic application. A fundamental tool is an uncertainty principle, which gives appropriate bounds for the quantification of space and momentum localization of trial functions. The essential outcome is a better understanding of constructive approximation in terms of radial basis functions such as splines and wavelets.

Two possible substitutes of the Fourier transform in geopotential determination are windowed Fourier transform (WFT) and wavelet transform (WT). In this paper we introduce harmonic WFT and WT and show how it can be used to give information about the geopotential simultaneously in the space domain and the frequency (angular momentum) domain. The counterparts of the inverse Fourier transform are derived, which allow us to reconstruct the geopotential from its WFT and WT, respectively. Moreover, we derive a necessary and sufficient condition that an otherwise arbitrary function of space and frequency has to satisfy to be the WFT or WT of a potential. Finally, least - squares approximation and minimum norm (i.e. least - energy) representation, which will play a particular role in geodetic applications of both WFT and WT, are discussed in more detail.

This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.

A new class of locally supported radial basis functions on the (unit) sphere is introduced by forming an infinite number of convolutions of ''isotropic finite elements''. The resulting up functions show useful properties: They are locally supported and are infinitely often differentiable. The main properties of these kernels are studied in detail. In particular, the development of a multiresolution analysis within the reference space of square--integrable functions over the sphere is given. Altogether, the paper presents a mathematically significant and numerically efficient introduction to multiscale approximation by locally supported radial basis functions on the sphere.

The purpose of GPS-satellite-to-satellite tracking (GPS-SST) is to determine the gravitational potential at the earth's surface from measured ranges (geometrical distances) between a low-flying satellite and the high-flying satellites of the Global Posittioning System (GPS). In this paper GPS-satellite-to-satellite tracking is reformulated as the problem of determining the gravitational potential of the earth from given gradients at satellite altitude. Uniqueness and stability of the solution are investigated. The essential tool is to split the gradient field into a normal part (i.e. the first order radial derivative) and a tangential part (i.e. the surface gradient). Uniqueness is proved for polar, circular orbits corresponding to both types of data (first radial derivative and/or surface gradient). In both cases gravity recovery based on satellite-to-satellite tracking turns out to be an exponentially ill-posed problem. As an appropriate solution method regularization in terms of spherical wavelets is proposed based on the knowledge of the singular system. Finally, the extension of this method is generalized to a non-spherical earth and a non-spherical orbital surface based on combined terrestrial and satellite data material.

Based on the well-known results of classical potential theory, viz. the limit and jump relations for layer integrals, a numerically viable and e±cient multiscale method of approximating the disturbing potential from gravity anomalies is established on regular surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The essential idea is to use scale dependent regularizations of the layer potentials occurring in the integral formulation of the linearized Molodensky problem to introduce scaling functions and wavelets on the telluroid. As an application of our multiscale approach some numerical examples are presented on an ellipsoidal telluroid.

As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.

Being interested in (rotation-)invariant pseudodi erential equations of satellite problems corresponding to spherical orbits, we are reasonably led to generating kernels that depend only on the spherical distance, i. e. in the language of modern constructive approximation form spherical radial basis functions. In this paper approximate identities generated by such (rotation-invariant) kernels which are additionally locally supported are investigated in detail from theoretical as well as numerical point of view. So-called spherical di erence wavelets are introduced. The wavelet transforms are evaluated by the use of a numerical integration rule, that is based on Weyl's law of equidistribution. This approximate formula is constructed such that it can cope with millions of (satellite) data. The approximation error is estimated on the orbital sphere. Finally, we apply the developed theory to the problems of satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG).

The purpose of satellite-to-satellite tracking (SST) and/or satellite gravity gradiometry (SGG) is to determine the gravitational field on and outside the Earth's surface from given gradients of the gravitational potential and/or the gravitational field at satellite altitude. In this paper both satellite techniques are analysed and characterized from mathematical point of view. Uniqueness results are formulated. The justification is given for approximating the external gravitational field by finite linear combination of certain gradient fields (for example, gradient fields of single-poles or multi-poles) consistent to a given set of SGG and/or SST data. A strategy of modelling the gravitational field from satellite data within a multiscale concept is described; illustrations based on the EGM96 model are given.

In this work we introduce a new bandlimited spherical wavelet: The Bernstein wavelet. It possesses a couple of interesting properties. To be specific, we are able to construct bandlimited wavelets free of oscillations. The scaling function of this wavelet is investigated with regard to the spherical uncertainty principle, i.e., its localization in the space domain as well as in the momentum domain is calculated and compared to the well-known Shannon scaling function. Surprisingly, they possess the same localization in space although one is highly oscillating whereas the other one shows no oscillatory behavior. Moreover, the Bernstein scaling function turns out to be the first bandlimited scaling function known to the literature whose uncertainty product tends to the minimal value 1.

A multiscale method is introduced using spherical (vector) wavelets for the computation of the earth's magnetic field within source regions of ionospheric and magnetospheric currents. The considerations are essentially based on two geomathematical keystones, namely (i) the Mie representation of solenoidal vector fields in terms of toroidal and poloidal parts and (ii) the Helmholtz decomposition of spherical (tangential) vector fields. Vector wavelets are shown to provide adequate tools for multiscale geomagnetic modelling in form of a multiresolution analysis, thereby completely circumventing the numerical obstacles caused by vector spherical harmonics. The applicability and efficiency of the multiresolution technique is tested with real satellite data.

In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.

This work is dedicated to the wavelet modelling of regional and temporal variations of the Earth's gravitational potential observed by GRACE. In the first part, all required mathematical tools and methods involving spherical wavelets are introduced. Then we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified, which is restricted to areas, where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time series of regionally obtained wavelet coefficients of the gravitational signal originated from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement to previous studies and illustrate that wavelets are an appropriate tool to investigate regional time-variable effects in the gravitational field.