### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (95)
- Preprint (9)
- Habilitation (3)
- Article (2)

#### Language

- English (109) (remove)

#### Keywords

- finite element method (8)
- Finite-Elemente-Methode (7)
- Kontinuumsmechanik (5)
- Nichtlineare Finite-Elemente-Methode (4)
- computational mechanics (4)
- continuum mechanics (4)
- Flüssig-Flüssig-Extraktion (3)
- NURBS (3)
- Biomechanik (2)
- CORBA (2)

#### Faculty / Organisational entity

- Fachbereich Maschinenbau und Verfahrenstechnik (109) (remove)

Computational Homogenization of Piezoelectric Materials using FE² Methods and Configurational Forces
(2015)

Piezoelectric materials are electro-mechanically coupled materials. In these materials it is possible to produce an electric field by applying a mechanical load. This phenomenon is known as the piezoelectric effect. These materials also exhibit a mechanical deformation in response to an external electric loading, which is known as the inverse piezoelectric effect. By using these smart properties of piezoelectric materials, applications are possible in sensors and actuators. Ferroelectric or piezoelectric materials show switching behavior of the polarization in the material under an external loading. Due to this property, these materials are used to produce random access memory (RAM) for the non-volatile storage of data in computing devices. It is essential to understand the material responses of piezoelectric materials properly in order to use them in the engineering applications in innovative manners. Due to the growing interest in determining the material responses of smart material (e.g., piezoelectric material), computational methods are becoming increasingly important.
Many engineering materials possess inhomogeneities on the micro level. These inhomogeneities in the materials cause some difficulties in the determination of the material responses computationally as well as experimentally. But on the other hand, sometimes these inhomogeneities help the materials to render some good physical properties, e.g., glass or carbon fiber reinforced composites are light weight, but show higher strength. Piezoelectric materials also exhibit intense inhomogeneities on the micro level. These inhomogeneities are originating from the presence of domains, domain walls, grains, grain boundaries, micro cracks, etc. in the material. In order to capture the effects of the underlying microstructures on the macro quantities, it is essential to homogenize material parameters and the physical responses. There are several approaches to perform the homogenization. A two-scale classical (first-order) homogenization of electro-mechanically coupled materials using a FE²-approach is discussed in this work. The main objective of this work is to investigate the influences of the underlying micro structures on the macro Eshelby stress tensor and on the macro configurational forces. The configurational forces are determined in certain defect situations. These defect situations include the crack tip of a sharp crack in the macro specimen.
A literature review shows that the macro strain tensor is used to determine the micro boundary condition for the FE²-based homogenization in a small strain setting. This approach is capable to determine the consistent homogenized physical quantities (e.g., stress, strain) and the homogenized material quantities (e.g., stiffness tensor). But the application of these type of micro boundaries for the homogenization does not generate physically consistent macro Eshelby stress tensor or the macro configurational forces. Even in the absence of the micro volume configurational forces, this approach of the homogenization of piezoelectric materials produces unphysical volume configurational forces on the macro level. After a thorough investigation of the boundary conditions on the representative volume elements (RVEs), it is found that a displacement gradient driven micro boundary conditions remedy this issue. The use of the displacement gradient driven micro boundary conditions also satisfies the Hill-Mandel condition. The macro Eshelby stress tensor of a pure mechanical problem in a small deformation setting can be determined in two possible ways: by using the homogenized mechanical quantities (displacement gradient and stress tensor), or by homogenizing the Eshelby stress tensor on the micro level by volume averaging. The first approach does not satisfy the Hill-Mandel condition incorporating the Eshelby stress tensor in the energy term, on the other hand, the Hill-Mandel condition is satisfied in the second approach. In the case of homogenized Eshelby stress tensor determined from the homogenized physical quantities, the Hill-Mandel condition gives an additional energy term. A body in a small deformation setting is deformed according to the displacement gradient. If the homogenization is done using strain driven micro boundary conditions, the micro domain is deformed according to the macro strain, but the tiny vicinity around the corresponding Gauß point is deformed according to the macro displacement gradient. This implies that some restrictions are imposed at every Gauß point on the macro level. This situation helps the macro system to produce nonphysical volume configurational forces.
A FE²-based computational homogenization technique is also considered for the homogenization of piezoelectric materials. In this technique a representative volume element, which comprises of the micro structural features in the material, is assigned to every Gauß point of the macro domain. The macro displacement gradient and the macro electric field, or the macro stress tensor and the macro electric displacement are passed to the RVEs at every macro Gauß point. After determining boundary conditions on the RVEs, the homogenization process is performed. The homogenized physical quantities and the homogenized material parameters are passed back to macro Gauß points. In this work numerical investigations are carried out for two distinct situations of the microstructures of the piezoelectric materials regarding the evolution on the micro level: a) homogenization by using stationary microstructures, and b) homogenization by using evolving microstructures.
For the first case, the domain walls remain at fixed positions through out the simulations for the homogenization of piezoelectric materials. For a considerably large external loading, the real situation is different. But to understand the effects of the underlying microstructures on the macro configurational forces, to some extent it is sufficient to do the homogenization with fixed or stationary microstructures. The homogenization process is carried out for different microstructures and for different loading conditions. If the mechanical load is applied in the direction of the polarization, a smaller crack tip configurational force is observed in comparison to the configurational force determined for a mechanical loading perpendicular to the polarization. If the polarizations in the microstructures are parallel or perpendicular to the applied electric field and the applied displacement, configurational forces parallel to the crack ligament of the macro crack are observed only. In the case of inclined polarizations in the microstructures, configurational forces inclined to the crack ligament are obtained. The simulation results also reveal that an application of an external electric field to the material reduces the value of the nodal configurational forces at the crack tip.
In the second case, the interfaces of the micro structures are allowed to move from their initial positions at every step of the applied incremental external loading. Thus, at every step of the application of the external loading, the microstructures are changed when the external loading is larger than the coercive field. The movement of the interfaces is realized through the nodal configurational forces on the micro level. At every step of the application of the external loading, the nodal configurational forces per unit length on the domain walls are determined in the post-processing of the FE-simulation on the micro domain. With the help of the domain wall kinetics, the new positions of the domain walls are determined. Numerical results show that the crack tip region is the most affected area in the macro domain. For that reason a very different distribution of the macro electric displacement is observed comparing the same produced by using fixed microstructures. Due to the movement of the domain walls, the energy is dissipated in the system. As a result, a smaller configurational force appears at the crack tip on the macro level in the case of the homogenization by using evolving microstructures. By using the homogenization technique involving the evolution of the microstructures, it is possible to produce the electric displacement vs. electric field hysteresis loop on the macro level. The shape of the hysteresis loop depends on the value of the rate of application of the external electric loading. A faster deployment of the external electric field widens the hysteresis loop.

The present thesis describes the development and validation of a viscosity adaption method for the numerical simulation of non-Newtonian fluids on the basis of the Lattice Boltzmann Method (LBM), as well as the development and verification of the related software bundle SAM-Lattice.
By now, Lattice Boltzmann Methods are established as an alternative approach to classical computational fluid dynamics
methods. The LBM has been shown to be an accurate and efficient tool for the numerical simulation of weakly compressible or incompressible fluids. Fields of application reach from turbulent simulations through thermal problems to acoustic calculations among others. The transient nature of the method and the need for a regular grid based, non body conformal discretization makes the LBM ideally suitable for simulations involving complex solids. Such geometries are common, for instance, in the food processing industry, where fluids are mixed by static mixers or agitators. Those fluid flows are often laminar and non-Newtonian.
This work is motivated by the immense practical use of the Lattice Boltzmann Method, which is limited due to stability issues. The stability of the method is mainly influenced by the discretization and the viscosity of the fluid. Thus, simulations of non-Newtonian fluids, whose kinematic viscosity depend on the shear rate, are problematic. Several authors have shown that the LBM is capable of simulating those fluids. However, the vast majority of the simulations in the literature are carried out for simple geometries and/or moderate shear rates, where the LBM is still stable. Special care has to be taken for practical non-Newtonian Lattice Boltzmann simulations in order to keep them stable. A straightforward way is to truncate the modeled viscosity range by numerical stability criteria. This is an effective approach, but from the physical point of view the viscosity bounds are chosen arbitrarily. Moreover, these bounds depend on and vary with the grid and time step size and, therefore, with the simulation Mach number, which is freely chosen at the start of the simulation. Consequently, the modeled viscosity range may not fit to the actual range of the physical problem, because the correct simulation Mach number is unknown a priori. A way around is, to perform precursor simulations on a fixed grid to determine a possible time step size and simulation Mach number, respectively. These precursor simulations can be time consuming and expensive, especially for complex cases and a number of operating points. This makes the LBM unattractive for use in practical simulations of non-Newtonian fluids.
The essential novelty of the method, developed in the course of this thesis, is that the numerically modeled viscosity range is consistently adapted to the actual physically exhibited viscosity range through change of the simulation time step and the simulation Mach number, respectively, while the simulation is running. The algorithm is robust, independent of the Mach number the simulation was started with, and applicable for stationary flows as well as transient flows. The method for the viscosity adaption will be referred to as the "viscosity adaption method (VAM)" and the combination with LBM leads to the "viscosity adaptive LBM (VALBM)".
Besides the introduction of the VALBM, a goal of this thesis is to offer assistance in the spirit of a theory guide to students and assistant researchers concerning the theory of the Lattice Boltzmann Method and its implementation in SAM-Lattice. In Chapter 2, the mathematical foundation of the LBM is given and the route from the BGK approximation of the Boltzmann equation to the Lattice Boltzmann (BGK) equation is delineated in detail.
The derivation is restricted to isothermal flows only. Restrictions of the method, such as low Mach number flows are highlighted and the accuracy of the method is discussed.
SAM-Lattice is a C++ software bundle developed by the author and his colleague Dipl.-Ing. Andreas Schneider. It is a highly automated package for the simulation of isothermal flows of incompressible or weakly compressible fluids in 3D on the basis of the Lattice Boltzmann Method. By the time of writing of this thesis, SAM-Lattice comprises 5 components. The main components are the highly automated lattice generator SamGenerator and the Lattice Boltzmann solver SamSolver. Postprocessing is done with ParaSam, which is our extension of the
open source visualization software ParaView. Additionally, domain decomposition for MPI
parallelism is done by SamDecomposer, which makes use of the graph partitioning library MeTiS. Finally, all mentioned components can be controlled through a user friendly GUI (SamLattice) implemented by the author using QT, including features to visually track output data.
In Chapter 3, some fundamental aspects on the implementation of the main components, including the corresponding flow charts will be discussed. Actual details on the implementation are given in the comprehensive programmers guides to SamGenerator and SamSolver.
In order to ensure the functionality of the implementation of SamSolver, the solver is verified in Chapter 4 for Stokes's First Problem, the suddenly accelerated plate, and for Stokes's Second Problem, the oscillating plate, both for Newtonian fluids. Non-Newtonian fluids are modeled in SamSolver with the power-law model according to Ostwald de Waele. The implementation for non-Newtonian fluids is verified for the Hagen-Poiseuille channel flow in conjunction with a convergence analysis of the method. At the same time, the local grid refinement as it is implemented in SamSolver, is verified. Finally, the verification of higher order boundary conditions is done for the 3D Hagen-Poiseuille pipe flow for both Newtonian and non-Newtonian fluids.
In Chapter 5, the theory of the viscosity adaption method is introduced. For the adaption process, a target collision frequency or target simulation Mach number must be chosen and the distributions must be rescaled according to the modified time step size. A convenient choice is one of the stability bounds. The time step size for the adaption step is deduced from the target collision frequency \(\Omega_t\) and the currently minimal or maximal shear rate in the system, while obeying auxiliary conditions for the simulation Mach number. The adaption is done in the collision step of the Lattice Boltzmann algorithm. We use the transformation matrices of the MRT model to map from distribution space to moment space and vice versa. The actual scaling of the distributions is conducted on the back mapping, because we use the transformation matrix on the basis of the new adaption time step size. It follows an additional rescaling of the non-equilibrium part of the distributions, because of the form of the definition for the discrete stress tensor in the LBM context. For that reason it is clear, that the VAM is applicable for the SRT model as well as the MRT model, where there is virtually no extra cost in the latter case. Also, in Chapter 5, the multi level treatment will be discussed.
Depending on the target collision frequency and the target Mach number, the VAM can be used to optimally use the viscosity range that can be modeled within the stability bounds or it can be used to drastically accelerate the simulation. This is shown in Chapter 6. The viscosity adaptive LBM is verified in the stationary case for the Hagen-Poiseuille channel flow and in the transient case for the Wormersley flow, i.e., the pulsatile 3D Hagen-Poiseuille pipe flow. Although, the VAM is used here for fluids that can be modeled with the power-law approach, the implementation of the VALBM is straightforward for other non-Newtonian models, e.g., the Carreau-Yasuda or Cross model. In the same chapter, the VALBM is validated for the case of a propeller viscosimeter developed at the chair SAM. To this end, the experimental data of the torque on the impeller of three shear thinning non-Newtonian liquids serve for the validation. The VALBM shows excellent agreement with experimental data for all of the investigated fluids and in every operating point. For reasons of comparison, a series of standard LBM simulations is carried out with different simulation Mach numbers, which partly show errors of several hundred percent. Moreover, in Chapter 7, a sensitivity analysis on the parameters used within the VAM is conducted for the simulation of the propeller viscosimeter.
Finally, the accuracy of non-Newtonian Lattice Boltzmann simulations with the SRT and the MRT model is analyzed in detail. Previous work for Newtonian fluids indicate that depending on the numerical value of the collision frequency \(\Omega\), additional artificial viscosity is introduced due to the finite difference scheme, which negatively influences the accuracy. For the non-Newtonian case, an error estimate in the form of a functional is derived on the basis of a series expansion of the Lattice Boltzmann equation. This functional can be solved analytically for the case of the Hagen-Poiseuille channel flow of non-Newtonian fluids. The estimation of the error minimum is excellent in regions where the \(\Omega\) error is the dominant source of error as opposed to the compressibility error.
Result of this dissertation is a verified and validated software bundle on the basis of the viscosity adaptive Lattice Boltzmann Method. The work restricts itself on the simulation of isothermal, laminar flows with small Mach numbers. As further research goals, the testing of the VALBM with minimal error estimate and the investigation of the VALBM in the case of turbulent flows is suggested.

A Consistent Large Eddy Approach for Lattice Boltzmann Methods and its Application to Complex Flows
(2015)

Lattice Boltzmann Methods have shown to be promising tools for solving fluid flow problems. This is related to the advantages of these methods, which are among others, the simplicity in handling complex geometries and the high efficiency in calculating transient flows. Lattice Boltzmann Methods are mesoscopic methods, based on discrete particle dynamics. This is in contrast to conventional Computational Fluid Dynamics methods, which are based on the solution of the continuum equations. Calculations of turbulent flows in engineering depend in general on modeling, since resolving of all turbulent scales is and will be in near future far beyond the computational possibilities. One of the most auspicious modeling approaches is the large eddy simulation, in which the large, inhomogeneous turbulence structures are directly computed and the smaller, more homogeneous structures are modeled.
In this thesis, a consistent large eddy approach for the Lattice Boltzmann Method is introduced. This large eddy model includes, besides a subgrid scale model, appropriate boundary conditions for wall resolved and wall modeled calculations. It also provides conditions for turbulent domain inlets. For the case of wall modeled simulations, a two layer wall model is derived in the Lattice Boltzmann context. Turbulent inlet conditions are achieved by means of a synthetic turbulence technique within the Lattice Boltzmann Method.
The proposed approach is implemented in the Lattice Boltzmann based CFD package SAM-Lattice, which has been created in the course of this work. SAM-Lattice is feasible of the calculation of incompressible or weakly compressible, isothermal flows of engineering interest in complex three dimensional domains. Special design targets of SAM-Lattice are high automatization and high performance.
Validation of the suggested large eddy Lattice Boltzmann scheme is performed for pump intake flows, which have not yet been treated by LBM. Even though, this numerical method is very suitable for this kind of vortical flows in complicated domains. In general, applications of LBM to hydrodynamic engineering problems are rare. The results of the pump intake validation cases reveal that the proposed numerical approach is able to represent qualitatively and quantitatively the very complex flows in the intakes. The findings provided in this thesis can serve as the basis for a broader application of LBM in hydrodynamic engineering problems.

An efficient multiscale approach is established in order to compute the macroscopic response of nonlinear composites. The micro problem is rewritten in an integral form of the Lippmann-Schwinger type and solved efficiently by Fast Fourier Transforms. Using realistic microstructure models complex nonlinear effects are reproduced and validated with measured data of fiber reinforced plastics. The micro problem is integrated in a Finite Element framework which is used to solve the macroscale. The scale coupling technique and a consistent numerical algorithm is established. The method provides an efficient way to determine the macroscopic response considering arbitrary microstructures, constitutive behaviors and loading conditions.

On the Extended Finite Element Method for the Elasto-Plastic Deformation of Heterogeneous Materials
(2015)

This thesis is concerned with the extended finite element method (XFEM) for deformation analysis of three-dimensional heterogeneous materials. Using the "enhanced abs enrichment" the XFEM is able to reproduce kinks in the displacements and therewith jumps in the strains within elements of the underlying tetrahedral finite element mesh. A complex model for the micro structure reconstruction of aluminum matrix composite AMC225xe and the modeling of its macroscopic thermo-mechanical plastic deformation behavior is presented, using the XFEM. Additionally, a novel stabilization algorithm is introduced for the XFEM. This algorithm requires preprocessing only.

The study addresses the effect of multiple jet passes and other parameters namely feedrate, water pressure and standoff distance in waterjet peening of metallic
surfaces. An analysis of surface integrity was used to evaluate the performance of
different parameters in the process. An increase in the number of jet passes and
pressure leads to a higher roughness and more erosion and also a higher hardness.
In contrast, the feedrate shows a reverse effect on those surface characteristics.
There exists a specific value of standoff distance that results in the maximum surface
roughness, erosion as well as hardness. Analysis of the surface microstructure gave
a good insight into the mechanism material removal process involving initial and
evolved damage. Also, the waterjet peening process was optimized based on the
design of experiment approach. The developed empirical models had shown
reasonable correlations between the measured and predicted responses. A proper selection of waterjet peening parameters can be formulated to be used in practical
works.

In the present work, the phase transitions in different Fe/FeC systems were studied by using the molecular dynamics simulation and the Meyer-Entel interaction potential (also the Johnson potential for Fe-C interaction). Fe-bicrystal, thin film, Fe-C bulk and Fe-C nanowire systems were investigated to study the behaviour of the phase transition, where the energetics, dynamics and transformations pathways were analysed.

Continuum Mechanical Modeling of Dry Granular Systems: From Dilute Flow to Solid-Like Behavior
(2014)

In this thesis, we develop a granular hydrodynamic model which covers the three principal regimes observed in granular systems, i.e. the dilute flow, the dense flow and the solid-like regime. We start from a kinetic model valid at low density and extend its validity to the granular solid-like behavior. Analytical and numerical results show that this model reproduces a lot of complex phenomena like for instance slow viscoplastic motion, critical states and the pressure dip in sand piles. Finally we formulate a 1D version of the full model and develop a numerical method to solve it. We present two numerical examples, a filling simulation and the flow on an inclined plane where the three regimes are included.

The noise issue in manufacturing system is widely discussed from legal and health aspects. Regarding the existing laws and guidelines, various investigation methods are implemented in industry. The sound pressure level can be measured and reduced by using established approaches in reality. However, a straightforward and low cost approach to study noise issue using existing digital factory models is not found.
This thesis attempts to develop a novel concept for sound pressure level investigation in a virtual environment. With this, the factory planners are able to investigate the noise issue during factory design and layout planning phase.
Two computer aided tools are used in this approach: acoustic simulation and virtual reality (VR). The former enables the planner to simulate the sound pressure level by given factory layout and facility sound features. And the latter provides a visualization environment to view and explore the simulation results. The combination of these two powerful tools provides the planners a new possibility to analyze the noise in a factory.
To validate the simulations, the acoustic measurements are implemented in a real factory. Sound pressure level and sound intensity are determined respectively. Furthermore, a software tool is implemented using the introduced concept and approach. With this software, the simulation results are represented in a Cave Automatic Virtual Environment (CAVE).
This thesis describes the development of the approach, the measurement of sound features, the design of visualization framework, and the implementation of VR software. Based on this know-how, the industry users are able to design their own method and software for noise investigation and analysis.

Tire-soil interaction is important for the performance of off-road vehicles and the soil compaction in the agricultural field. With an analytical model, which is integrated in multibody-simulation software, and a Finite Element model, the forces and moments generated on the tire-soil contact patch were studied to analyze the tire performance. Simulations with these two models for different tire operating conditions were performed to evaluate the mechanical behaviors of an excavator tire. For the FE model validation a single wheel tester connected to an excavator arm was designed. Field tests were carried out to examine the tire vertical stiffness, the contact pressure on the tire – hard ground interface, the longitudinal/vertical force and the compaction of the sandy clay from the test field under specified operating conditions. The simulation and experimental results were compared to evaluate the model quality. The Magic Formula was used to fit the curves of longitudinal and lateral forces. A simplified tire-soil interaction model based on the fitted Magic Formula could be established and further applied to the simulation of vehicle-soil interaction.

Aim of this work was the extension and development of a coupled Computational Fluid Dynamics (CFD) and population balance model (PBM) solver to enable a simulation aided design of stirred liquid-liquid extraction columns. The principle idea is to develop a new design methodology based on a CFD-PBM approach and verify it with existing data and correlations. On this basis, the separation performance in any apparatus geometry should be possible to predict without any experimental input. Reliable “experiments in silico” (computer calculations) should give the engineer a valuable and user-friendly tool for early design studies at minimal costs.
The layout of extraction columns is currently based on experimental investigations from miniplant to pilot plant and a scale-up to the industrial scale. The hydrodynamic properties can be varied by geometrical adjustments of the stirrer diameter, the stirrer height, the free cross sectional area of the stator, the compartment height as well as the positioning and the size of additional baffles. The key parameter for the liquid–liquid extraction is the yield which is mainly determined at the in- and outlets of the column. Local phenomena as the swirl structure are influenced by geometry changes. However, these local phenomena are generally neglected in state-of-the are design methodologies due to the complex required measurement techniques. A geometrical optimization of the column therefore still results in costs for validation experiments as assembly and operation of the column, which can be reduced by numerical investigations. The still mainly in academics used simulation based layout of counter-current extraction columns is based at the beginning of this work on one dimensional simulations of extraction columns and first three dimensional simulations. The one dimensional simulations are based on experimental derived, geometrical dependent correlations for the axial backmixing (axial dispersion), the hold-up, the phase fraction, the droplet sedimentation and the energy dissipation. A combination of these models with droplet population balance modeling resulted in a description of the complex droplet-droplet interactions (droplet size) along the column height. The three dimensional CFD simulations give local information about the flow field (velocity, swirl structure) based on the used numerical mesh corresponding to the real geometry. A coupling of CFD with population balance modeling further provides information about the local droplet size. A backcoupling of the droplet size with the CFD (drag model) results in an enhancement of the local hydrodynamics (e.g. hold-up, dispersed phase velocity). CFD provided local information about the axial dispersion coefficient of simple geometrical design (e.g. Rotating Disc Contactor (RDC) column). First simulations of the RDC column using a two dimensional rotational geometry combined with population balance modeling were performed and gave local information about the droplet size for different boundary conditions (rotational speed, different column sizes).
In this work, two different column types were simulated using an extended OpenSource CFD code. The first was the RDC column, which were mainly used for code development due to its simple geometry. The Kühni DN32 column is equipped with a six-baffled stirring device and flat baffles for disturbing the flow and requires a full three dimensional description. This column type was mainly used for experimental validation of the simulations due to the low required volumetric flow rate. The Kühni DN60 column is similar to the Kühni DN32 column with slight changes to the stirring device (4-baffles) and was used for scale up investigations. For the experimental validation of the hydrodynamics, laser based measurement techniques as Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) were used. A good agreement between the experimental derived values for velocity, hold-up and energy dissipation, experimentally derived correlations from literature and the simulations with a modified Euler-Euler based OpenSource CFD code could be found. The experimental derived axial dispersion coefficient was further compared to Euler-Lagrange simulations. The experimental derived correlations for the Kühni DN32 in literature fit to the simulated values. Also the axial dispersion coefficient for the dispersed phase satisfied a correlation from literature. However, due to the complexity of the dispersed phase axial dispersion coefficient measurement, the available correlations gave no distinct agreement to each other.
A coupling of the modified Euler-Euler OpenSource CFD code was done with a one group population balance model. The implementation was validated to the analytical solution of the population balance equation for constant breakage and coalescence kernels. A further validation of the population balance transport equation was done by comparing the results of a five compartment section to the results of the commercial CFD code FLUENT using the Quadrature Method of Moments (QMOM).
For the simulation of the droplet-droplet interactions in liquid-liquid extraction columns, several breakage and coalescence models are available in the literature. The models were compared to each other using the one-group population balance model in Matlab which allows the determination of the minimum stable droplet diameter at a certain energy dissipation. Based on this representation, it was possible to determine the parameters for a specific breakage and coalescence model combination which allowed the simulation of a Kühni miniplant column at different rotational speeds. The resulting simulated droplet size was in very good agreement to the experimental derived droplet size from literature. Several column designs of the DN32 were investigated by changing the compartment height and the axial stirrer position. It could be shown that a decrease of the stirrer position increases the phase fraction inside the compartment. At the same time, the droplet size decreases inside the compartment, which allows a higher mass transfer due to a higher available interfacial area. However, the shifting results in an expected earlier flooding of the column due to a compressed flow structure underneath the stirring device. In a next step, the code was further extended by mass transfer equations based on the two-film theory. Mass transfer coefficient models for the dispersed and continuous phase were investigated for the RDC column design.
A first mass transfer simulation of a full miniplant column was done. The change in concentration was accounted by the mixture density, viscosity and interfacial tension in dependence of the concentration, which affects the calculation of the droplet size. The results of the column simulation were compared to own experimental data of the column. It could be shown that the concentration profile along the column height can be predicted by the presented CFD/population balance/mass transfer code. The droplet size decreases corresponding to the interfacial tension along the column height. Compared to the experimental derived droplet size at the outlet, the simulation is in good agreement.
Besides the occurrence of a mono dispersed droplet size, high breakage may lead to the generation of small satellite droplets and coalescence underneath the stator leads to larger droplets inside the column and hence to a change of the hold-up and of the flooding point. A multi-phase code was extended by the Sectional Quadrature Method of Moment (SQMOM) allowing a modeling of the droplet interactions of bimodal droplet interactions or multimodal distributions. The implementations were in good agreement to the analytical solution. In addition, the simulation of an RDC column section showed the different distribution of the smaller droplets and larger droplets. The smaller droplets tend to follow the continuous phase flow structure and show a higher distribution of inside the column. The larger droplets tend to rise directly through the column and show only a low influence to the continuous phase flow.
The current results strengthen the use of CFD for the layout of liquid-liquid extraction columns in future. The coupling of CFD/PBM and mass transfer using an OpenSource CFD code allows the investigation of computational intensive column designs (e.g. pilot plant columns). Furthermore the coupled code enhances the accuracy of the hydrodynamics simulations and leads to a better understanding of counter-current liquid-liquid extraction columns. The gained correlation were finally used as an input for one dimensional mass transfer simulations, where a perfect fit of the concentration profiles at varied boundary conditions could be obtained. By using the multi-scale approach, the computational time for mass transfer simulations could be reduced to minutes. In future, with increasing computational power, a further extend of the multiphase CFD/SQMOM model including mass transfer equation will provide an efficient tool to model multimodal and multivariate systems as bubble column reactors.

This thesis is concerned with a phase field model for brittle fracture.
The high potential of phase field modeling in computational fracture mechanics lies in the generality of the approach and the straightforward numerical implementation, combined with a good accuracy of the results in the sense of continuum fracture mechanics.
However, despite the convenient numerical application of phase field fracture models, a detailed understanding of the physical properties is crucial for a correct interpretation of the numerical results. Therefore, the driving mechanisms of crack propagation and nucleation in the proposed phase field fracture model are explored by a thorough numerical and analytical investigation in this work.

Hydrogels are known to be covalently or ionic cross-linked, hydrophilic three-dimensional
polymer networks, which exist in our bodies in a biological gel form such as the vitreous
humour that fills the interior of the eyes. Poly(N-isopropylacrylamide) (poly(NIPAAm))
hydrogels are attracting more interest in biomedical applications because, besides others, they
exhibit a well-defined lower critical solution temperature (LCST) in water, around 31–34°C,
which is close to the body temperature. This is considered to be of great interest in drug
delivery, cell encapsulation, and tissue engineering applications. In this work, the
poly(NIPAAm) hydrogel is synthesized by free radical polymerization. Hydrogel properties
and the dimensional changes accompanied with the volume phase transition of the
thermosensitive poly(NIPAAm) hydrogel were investigated in terms of Raman spectra,
swelling ratio, and hydration. The thermal swelling/deswelling changes that occur at different
equilibrium temperatures and different solutions (phenol, ethanol, propanol, and sodium
chloride) based on Raman spectrum were investigated. In addition, Raman spectroscopy has
been employed to evaluate the diffusion aspects of bovine serum albumin (BSA) and phenol
through the poly(NIPAAm) network. The determination of the mutual diffusion coefficient,
\(D_{mut}\) for hydrogels/solvent system was achieved successfully using Raman spectroscopy at
different solute concentrations. Moreover, the mechanical properties of the hydrogel, which
were investigated by uniaxial compression tests, were used to characterize the hydrogel and to
determine the collective diffusion coefficient through the hydrogel. The solute release coupled
with shrinking of the hydrogel particles was modelled with a bi-dimensional diffusion model
with moving boundary conditions. The influence of the variable diffusion coefficient is
observed and leads to a better description of the kinetic curve in the case of important
deformation around the LCST. A good accordance between experimental and calculated data
was obtained.

The discrete nature of the dispersed phase (swarm of droplet) in stirred and pulsed liquid-liquid extraction columns makes its mathematical modelling of such complex system a tedious task. The dispersed phase is considered as a population of droplets distributed randomly with respect to their internal properties (such as: droplet size and solute concentration) at a specific location in space. Hence, the population balance equation has been emerged as a mathematical tool to model and describe such complex behaviour. However, the resulting model is too complicated. Accordingly, the analytical solution of such a mathematical model does not exist except for particular cases. Therefore, numerical solutions are resorted to in general. This is due to the inherent nonlinearities in the convective and diffusive terms as well as the appearance of many integrals in the source term. However, modelling and simulation of liquid extraction columns is not an easy task because of the discrete nature of the dispersed phase, which consist of population of droplets. The natural frame work for taking this into account is the population balance approach.
In part of this doctoral thesis work, a rigours mathematical model based on the bivariate population balance frame work (the base of LLECMOD ‘‘Liquid-Liquid Extraction Column Module’’) for the steady state and dynamic simulation of pulsed (sieve plate and packed) liquid-liquid extraction columns is developed. The model simulates the coupled hydrodynamic and mass transfer for pulsed (packed and sieve plate) extraction columns. The model is programmed using visual digital FORTRAN and then integrated into the LLECMOD program. Within LLECMOD the user can simulate different types of extraction columns including stirred and pulsed ones. The basis of LLECMOD depends on stable robust numerical algorithms based on an extended version of a fixed pivot technique after Attarakih et al., 2003 (to take into account interphase solute transfer) and advanced computational fluid dynamics numerical methods. Experimental validated correlations are used for the estimation of the droplet terminal velocity in extraction columns based on single and swarm droplet experiments in laboratory scale devices. Additionally, recent published correlations for turbulent energy dissipation, droplet breakage and coalescence frequencies are discussed as been used in this version of LLECMOD. Moreover, coalescence model from literature derived from a stochastical description have been modified to fit the deterministic population model. As a case study, LLECMOD is used here to simulate the steady state performance of pulsed extraction columns under different operating conditions, which include pulsation intensity and volumetric flow rates are simulated. The effect of pulsation intensity (on the holdup, mean droplet diameter and solute concentration) is found to have more profound effect on systems of high interfacial tension. On the hand, the variation of volumetric flow rates have substantial effect on the holdup, mean droplet diameter and solute concentration profiles for chemical systems with low interfacial tension. Two chemical test systems recommended by the European Federation of Chemical Engineering (water-acetone (solute)-n-butyl acetate and water-acetone (solute)-toluene) and an industrial test system are used in the simulation. Model predictions are successfully validated against steady state and transient experimental data, where good agreements are achieved. The simulated results (holdup, mean droplet diameter and mass transfer profiles) compared to the experimental data show that LLECMOD is a powerful simulation tool, which can efficiently predict the dynamic and steady state performance of pulsed extraction columns.
In other part of this doctoral thesis work, the steady state performance of extraction columns is studied taking into account the effect of dispersed phase inlet condition (light or heavy phase is dispersed) and the direction of mass transfer (from continuous to dispersed phase and vice versa) using the population balance framework. LLECMOD, a program that uses multivariate population balance models, is extended to take into account the direction of mass transfer and the dispersed phase inlet. As a case study, LLECMOD is used to simulate pilot plant RDC columns where the steady state mean flow properties (dispersed phase hold up and droplet mean diameter) and the solute concentration profiles are compared to the available experimental data. Three chemical systems were used: sulpholane–benzene–n-heptane, water–acetone–toluene and water–acetone–n-butyl acetate. The dispersed phase inlet and the direction of mass transfer as well as the chemical system physical properties are found to have profound effect on the steady state performance of the RDC column. For example, the mean droplet diameter is found to persist invariant when the heavy phase is dispersed and the extractor efficiency is higher when the direction of mass transfer is from the continuous to the dispersed phase. For the purpose of experimental validation, it is found that LLECMOD predictions are in good agreement with the available experimental data concerning the dispersed phase hold up, mean droplet diameter and solute concentration profiles in both phases.
In a further part of this doctoral thesis, a mathematical model is developed for liquid extraction columns based on the multivariate population balance equation (PBE) and the primary secondary particle method (PSPM) introduced by Attarakih, 2010 (US Patent Application: 0100106467). It is extended to include the momentum balance for the dispersed phase. The advantage of momentum balance is to eliminate the need for often conflicting correlations used in estimating the terminal velocity of single and swarm of droplets. The resulting mathematical model is complex due to the integral nature of the population balance equation. To reduce the complexity of this model, while maintaining most of the information drawn from the continuous population balance equation, the concept of the PSPM is used. Based on the multivariate population balance equation and the PSPM a mathematical model is developed for any liquid extraction column. The secondary particle could be envisaged as a fluid particle carrying information about the distribution as it is evolved in space and time, in the meanwhile the primary particles carry the mean properties of the population such as total droplet concentration; mean droplet diameter dispersed phase hold up and so on. This information reflects the particle-particle interactions (breakage and coalescence) and transport (convection and diffusion). The developed model is discretized in space using a first-order upwind method, while semi-implicit first-order scheme in time is used to simulate a pilot plant RDC extraction column. Here the effect of the number of primary particles (classes) on the final predicted solution is investigated. Numerical results show that the solution converge fast even as the number of primary particle is increased. The terminal droplet velocity of the individual primary particle is found the most sensitive to the number of primary particles. Other mean population properties like the droplet mean diameter, mean hold up and the concentration profiles are also found to converge along the column height by increasing the number of primary particles. The predicted steady state profiles (droplet diameter, holdup and the concentration profiles) along a pilot RDC extraction column are compared to the experimental data where good agreement is achieved.
In addition to this a robust rigorous mathematical model based on the bivariate population balance equation is developed to predict the steady state and dynamic behaviour of the interacting hydrodynamics and mass transfer in Kühni extraction columns. The developed model is extended to include the momentum balance for the calculation of the droplet velocity. The effects of step changes in the important input variables (such as volumetric flow rates, rotational speed, inlet solute concentrations etc.) on the output variables (dispersed phase holdup, mean droplet diameter and the concentration profiles) are investigated.
The last topic of this doctoral thesis is developed to transient problems. The unsteady state analysis reveals the fact that the largest time constant (slowest response) is due to the mass transfer. On the contrary, the hydrodynamic response of the dispersed phase holdup is very fast when compared to the mass transfer due to the relative fast motion of the dispersed droplets with respect to the continuous phase. The dynamic behaviour of the dispersed and continuous phases shows a lag time that increases away from the feed points of both phases. Moreover, the solute concentration response shows a highly nonlinear behaviour due to both positive and negative step changes in the input variables. The simulation results are in good agreement with the experimental ones and show the usefulness of the model.

The primary objective of this work is the development of robust, accurate and efficient simulation methods for the optimal control of mechanical systems, in particular of constrained mechanical systems as they appear in the context of multibody dynamics. The focus is on the development of new numerical methods that meet the demand of structure preservation, i.e. the approximate numerical solution inherits certain characteristic properties from the real dynamical process.
This task includes three main challenges. First of all, a kinematic description of multibody systems is required that treats rigid bodies and spatially discretised elastic structures in a uniform way and takes their interconnection by joints into account. This kinematic description must not be subject to singularities when the system performs large nonlinear dynamics. Here, a holonomically constrained formulation that completely circumvents the use of rotational parameters has proved to perform very well. The arising constrained equations of motion are suitable for an easy temporal discretisation in a structure preserving way. In the temporal discrete setting, the equations can be reduced to minimal dimension by elimination of the constraint forces. Structure preserving integration is the second important ingredient. Computational methods that are designed to inherit system specific characteristics – like consistency in energy, momentum maps or symplecticity – often show superior numerical performance regarding stability and accuracy compared to standard methods. In addition to that, they provide a more meaningful picture of the behaviour of the systems they approximate. The third step is to take the previ- ously addressed points into the context of optimal control, where differential equation and inequality constrained optimisation problems with boundary values arise. To obtain meaningful results from optimal control simulations, wherein energy expenditure or the control effort of a motion are often part of the optimisation goal, it is crucial to approxi- mate the underlying dynamics in a structure preserving way, i.e. in a way that does not numerically, thus artificially, dissipate energy and in which momentum maps change only and exactly according to the applied loads.
The excellent numerical performance of the newly developed simulation method for optimal control problems is demonstrated by various examples dealing with robotic systems and a biomotion problem. Furthermore, the method is extended to uncertain systems where the goal is to minimise a probability of failure upper bound and to problems with contacts arising for example in bipedal walking.

This thesis is concerned with the modeling of the domain structure evolution in ferroelectric materials. Both a sharp interface model, in which the driving force on a domain wall is used to postulate an evolution law, and a continuum phase field model are treated in a thermodynamically consistent framework. Within the phase field model, a Ginzburg-Landau type evolution law for the spontaneous polarization is derived. Numerical simulations (FEM) show the influence of various kinds of defects on the domain wall mobility in comparison with experimental findings. A macroscopic material law derived from the phase field model is used to calculate polarization yield surfaces for multiaxial loading conditions.

This thesis treats the extension of the classical computational homogenization scheme towards the multi-scale computation of material quantities like the Eshelby stresses and material forces. To this end, microscopic body forces are considered in the scale-transition, which may emerge due to inhomogeneities in the material. Regarding the determination of material quantities based on the underlying microscopic structure different approaches are compared by means of their virtual work consistency. In analogy to the homogenization of spatial quantities, this consistency is discussed within Hill-Mandel type conditions.

Point defects in piezoelectric materials – continuum mechanical modelling and numerical simulation
(2010)

The topic of this work is the continuum mechanic modelling of point defects in piezoelectric materials. Devices containing piezoelectric material and especially ferroelectrics require a high precision and are exposed to a high number of electrical and mechanical load cycles. As a result, the relevant material properties may decrease with increasing load cycles. This phenomenon is called electric fatigue. The transported ionic and electric charge carriers can interact with each other, as well as with structural elements (grain boundaries, inhomogeneities) or with material interfaces (domain walls). A reduced domain wall mobility also reduces the electromechanical coupling effect, which leads to the electric fatigue effect. The materials considered here are barium titanate and lead zirconate titanate (PZT), in which oxygen vacancies is the most mobile and most frequently appearing defect species. Intentionally introduced foreign atoms (dopants) can adjust the material properties according to their field of application by generating electric dipoles with the vacancies. Agglomerations of point defects can strongly influence the domain wall motion. The domain wall can be slowed down or even be stopped by the locally varying fields in the vicinity of the clusters. Accumulations of point defects can be detected at electrodes, pores or in the bulk of fatigued samples. The present thesis concentrates focuses on the self interaction behaviour of point defects in the bulk. A micro mechanical continuum model is used to show the qualitative and the quantitative interaction behaviour of defects in a static setup and during drift processes. The modelling neglects the ferroelectric switching mechanisms, but is applicable to every piezoelectric material. The underlying differential equations are solved by means of analytical (Green's functions) and numerical (Finite Differences with discrete Fourier Transform) methods, depending on the boundary conditions. The defects are introduced as localised Eigenstrains, as electric charges and as electric dipoles. The required defect parameters are obtained by comparisons with atomistic methods (lattice statics). There are no standardised procedures available for the parameter identification. In this thesis, the mechanical parameter is obtained by a comparison of relaxation volumes of the atomic lattice and the continuum solution. Parameters for isotropic and anisotropic defect descriptions are identified. The strength of the electric defect is obtained by a comparison of the electric internal energies of atomistics and continuum. The appearing singularities are eliminated by taking only the energy difference of a infinite crystal and a periodic cell into account. Both identification processes are carried out for the cubic structure of barium titanate, which decouples the mechanical and the electrical problem. The defect interaction is analysed by means of configurational forces. The mechanical defect parameter generates a directional short-range attraction between defects. An electrical defect parameter produces the long-range Coulomb interaction, which predicts a repulsion of two similar charges. Additionally, an interaction with defect dipoles is taken into account. It is shown that a defect agglomeration is possible for any static defect configuration. Finally, defect drift is simulated using a thermodynamically motivated migration law based on configurational forces. In this context, the migration of point defects due to self interaction, and the influence of external fields is investigated.

The aim of this thesis was to link Computational Fluid Dynamics (CFD) and Population Balance Modelling (PBM) to gain a combined model for the prediction of counter-current liquid-liquid extraction columns. Parts of the doctoral thesis project were done in close cooperation with the Fraunhofer ITWM. Their in-house CFD code Finite Pointset Method (FPM) was further developed for two-phase simulations and used for the CFD-PBM coupling. The coupling and all simulations were also carried out in the commercial CFD code Fluent in parallel. For the solution methods of the PBM there was a close cooperation with Prof. Attarakih from the Al-Balqa Applied University in Amman, Jordan, who developed a new adaptive method, the Sectional Quadrature Method of Moments (SQMOM). At the beginning of the project, there was a lack of two-phase liquid-liquid CFD simulations and their experimental validation in literature. Therefore, stand-alone CFD simulations without PBM were carried out both in FPM and Fluent to test the predictivity of CFD for stirred liquid-liquid extraction columns. The simulations were validated by Particle Image Velocimetry (PIV) measurements. The two-phase PIV measurements were possible when using an iso-optical system, where the refractive indices of both liquid phases are identical. These investigations were done in segments of two Rotating Disc Contactors with 150mm and 450mm diameter to validate CFD at lab and at industrial scale. CFD results of the aqueous phase velocities, hold-up, droplet raising velocities and turbulent energy dissipation were compared to experimental data. The results show that CFD can predict most phenomena and there was an overall good agreement. In the next steps, different solution methods for the PBM, e.g. the SQMOM and the Quadrature Method of Moments (QMOM) were implemented, varied and tested in Fluent and FPM in a two-fluid model. In addition, different closures for coalescence and breakage were implemented to predict drop size distributions and Sauter mean diameters in the RDC DN150 column. These results show that a prediction of the droplet size distribution is possible, even when no adjustable parameters are used. A combined multi-fluid CFD-PBM model was developed by means of the SQMOM to overcome drawbacks of the two-fluid approach. Benefits of the multi-fluid approach could be shown, but the high computational load was also visible. Therefore, finally, the One Primary One Secondary Particle Method (OPOSPM), which is a very easy and efficient special case of the SQMOM, was introduced in CFD to simulate a full pilot plant column of the RDC DN150. The OPOSPM offers the possibility of a one equation model for the solution of the PBM in CFD. The predicted results for the mean droplet diameter and the dispersed phase hold up agree well with literature data. The results also show that the new CFD-PBM model is very efficient from computational point of view (two times less than the QMOM and five times less than the method of classes). The overall results give rise to the expectation that the coupled CFD-PBM model will lead to a better, faster and more cost-efficient layout of counter-current extraction columns in future.

Mechanical and electrical properties of carbon nanofiber–ceramic nanoparticle–polymer composites
(2010)

The present research is focused on the manufacturing and analysis of composites consisting of a thermosetting polymer reinforced with fillers of nanometric dimensions. The materials were chosen to be an epoxy resin matrix and two different kinds of fillers: electrically conductive carbon nanofibers (CNFs) and ceramic titanium dioxide (TiO2) and aluminium dioxide (Al2O3) nanoparticles. In an initial step of the work, in order to understand the effect that each kind of filler had when added separately to the polymer matrix, CNF–EP and ceramic nanoparticle–EP composites were manufactured and tested. Each type of filler was dispersed in the polymer matrix using two different dispersion technologies. CNFs were dispersed in the resin with the aid of a three roll calender (TRC) whereas a torus bead mill (TML) was used in the ceramic nanoparticle case. Calendering proved to be an efficient method to disperse the untreated CNFs in the polymer matrix. The study of the physical properties of undispersed CNF composites showed that the tensile strength and the maximum sustained strain, were more sensitive to the state of dispersion of the nanofibers than the elastic modulus, fracture toughness, impact energy and electrical conductivity (for filler loadings above the percolation threshold of the system). Rheological investigation of the uncured CNF–epoxy mixture at different stages of dispersion indicated the formation of an interconnected nanofiber network within the matrix after the initial steps of calendering. CNF–EP composites showed better mechanical performance than the unmodified polymer matrix. However, the tensile modulus and strength of the CNF composites accused the presence of remaining nanofiber clusters and did not reach theoretically predicted values. Fracture toughness and resistance against impact did not seem to be so sensitive to the state of nanofiber dispersion and improved consistently with the incorporation of the CNFs. The electrical conductivity of the CNF composites saw an eight orders of magnitude percolative enhancement with increasing nanofiber content. The percolation threshold for the achieved level of CNF dispersion was found to be 0.14 vol. %. It was also determined that, for these composites, the main mechanism of electrical transmission was the electron tunnelling mechanism. Ceramic nanoparticle–EP composites were manufactured using TiO2 and Al2O3 particles as fillers in the epoxy matrix. Mechanical dispersion of the nanoparticles in the liquid polymer by means of a torus bead mill dissolver led to homogeneous distributions of particles in the matrix. Remaining particle agglomerates had a mean value of 80 nm. However, micrometer sized agglomerates could clearly be observed in the microscopical analysis of the composites, especially in the TiO2 case. The inclusion of the nanoparticles in the epoxy resin resulted in a general improvement of the modulus, strength, maximum sustained strain, fracture toughness and impact energy of the polymer matrix. Nanoparticles were able to overcome the stiffness/toughness problem. On the other hand, nanoparticle–EP composites showed lower electrical conductivity than the neat epoxy. In general, there were no significant differences between the incorporation of TiO2 or Al2O3 particles. Based on the previous results, CNFs and nanoparticles were combined as fillers to create a nanocomposite that could benefit from the electrical properties provided by the conductive CNFs and, at the same time, have improved mechanical performance thanks to the presence of the well dispersed ceramic nanoparticles. Nanoparticles and CNFs were dispersed separately to create two batches which were blended together in a dissolver mixer. This method proved effective to create well dispersed CNF–nanoparticle–epoxy composites which showed improved electrical and mechanical properties compared with the neat polymer matrix. The well dispersed ceramic nanofillers were able to introduce additional energy dissipating mechanisms in the CNF–EP composites that resulted in an improvement of their mechanical performance. With high volume loadings of nanoparticles most of the reinforcement came from the presence of the nanoparticles in the polymer matrix. Therefore, the observed trends were, in essence, similar to the ones observed in the ceramic nanoparticle–EP composites. The enhancement in the mechanical performance of the CNF composites with the inclusion of ceramic nanoparticles came at the price of an increase in the percolation threshold and a reduction of the electrical conductivity of the CNF–nanoparticle–EP composites compared with the CNF–EP materials. A modified Weber and Kamal’s fiber contact model (FCM) was used to explain the electrical behaviour of the CNF–nanoparticle–EP composites once percolation was achieved. This model was able to fit rather accurately the experimentally measured conductivity of these composites.

Microfibrillar reinforced composites (MFC) have attracted considerable academic and practical interests after the concept was introduced more than a decade years ago. This new type of composites will be created by blending of two polymers with different melting temperatures and processing the blend under certain thermo-mechanical conditions to generate in-situ formed microfibrils of the higher melting polymer grade of temperature in the blend. The compression molded microfibrillar composites were reported to possess excellent mechanical properties and thus they are promising materials for different applications. In the present work, a typical immiscible polymer blend PET/PP was selected for the preparation of PET/PP, PET/PP/TiO2 microfibrillar reinforced composites. The objective of this study is to analyse the processing-structure-property relationship in the PET/PP based MFCs. The morphology of the PET microfibrils and the dispersion of the TiO2 nanoparticles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and discussed. The crystallization behaviour of PET and PP was studied by means of differential scanning calorimetry (DSC). The thermomechanical and mechanical properties of the composites were determined by dynamic mechanical thermal analysis (DMTA) and uniaxial tensile tests and the related results discussed as a function of the composition of the corresponding system. During stretching of the PET/PP extrudate, the PET dispersed phase was deformed into microfibrils. These microfibrils were still well persevered after compression molding of the drawn strands. Therefore the PET microfibrils acted as the reinforcement for the PP matrix. Compared with neat PP, the tensile properties of the PET/PP MFC were greatly improved. For the PET/PP/TiO2 MFC, the effects of polypropylene grafted maleic anhydride (PP-g-MA, introduced as compatibilizer) and TiO2 particles on the structure and properties of drawn strands and composites were investigated. Upon the addition of PP-g-MA, the preferential location of TiO2 particles changed: they migrated from the PET dispersed phase to the continuous PP matrix phase. This was accompanied with structural changes of the drawn strands. The microfibril formation mechanism was also investigated. After injection molding of the microfibrillar composites, the preferential location of TiO2 particles was still preserved. DMTA analysis of drawn strands, the tensile and impact tests of the composites demonstrated that the mechanical properties of the drawn strands of the microfibrillar composites were strongly dependent on the respective structures of the tested materials. To further investigate the preferential location of TiO2 particles in the PET/PP blend which were discovered during the preparation of PET/PP/TiO2 MFCs, PET/PP/TiO2 ternary nanocomposites were prepared according to four blending procedures. The preferential location of TiO2 nanoparticles was influenced by the blending sequence and the amount of PP-g-MA incorporated. Furthermore, it was discovered that TiO2 nanoparticles exerted a compatibilizing effect on the morphology of the composites. Three different compatibilization mechanisms of nanoparticles were proposed depending on the location of the nanoparticles.

Elastomers and their various composites, and blends are frequently used as engineering working parts subjected to rolling friction movements. This fact already substantiates the importance of a study addressing the rolling tribological properties of elastomers and their compounds. It is worth noting that until now the research and development works on the friction and wear of rubber materials were mostly focused on abrasion and to lesser extent on sliding type of loading. As the tribological knowledge acquired with various counterparts, excluding rubbers, can hardly be adopted for those with rubbers, there is a substantial need to study the latter. Therefore, the present work was aimed at investigating the rolling friction and wear properties of different kinds of elastomers against steel under unlubricated condition. In the research the rolling friction and wear properties of various rubber materials were studied in home-made rolling ball-on-plate test configurations under dry condition. The materials inspected were ethylene/propylene/diene rubber (EPDM) without and with carbon black (EPDM_CB), hydrogenated acrylonitrile/butadiene rubber (HNBR) without and with carbon black/silica/multiwall carbon nanotube (HNBR_CB/silica/MWCNT), rubber-rubber hybrid (HNBR and fluororubber (HNBR-FKM)) and rubber-thermoplastic blend (HNBR and cyclic butylene terephthalate oligomers (HNBR-CBT)). The dominant wear mechanisms were investigated by scanning electron microscopy (SEM), and analyzed as a function of composition and testing conditions. Differential scanning calorimetry (DSC), dynamic-mechanical thermal analysis (DMTA), atomic force microscopy (AFM), and transmission electron microscopy (TEM) along with other auxiliary measurements, were adopted to determine the phase structure and network-related properties of the rubber systems. The changes of the friction and wear as a function of type and amount of the additives were explored. The friction process of selected rubbers was also modelled by making use of the finite element method (FEM). The results show that incorporation of filler enhanced generally the wear resistance, hardness, stiffness (storage modulus), and apparent crosslinking of the related rubbers (EPDM-, HNBR- and HNBR-FKM based ones), but did not affect their glass transition temperature. Filling of rubbers usually reduced the coefficient of friction (COF). However, the tribological parameters strongly depended also on the test set-up and test duration. High wear loss was noticed for systems showing the occurrence of Schallamach-type wavy pattern. The blends HNBR-FKM and HNBR-CBT were two-phase structured. In HNBR-FKM, the FKM was dispersed in form of large microscaled domains in the HNBR matrix. This phase structure did not change by incorporation of MWCNT. It was established that the MWCNT was preferentially embedded in the HNBR matrix. Blending HNBR with FKM reduced the stiffness and degree of apparent crosslinking of the blend, which was traced to the dilution of the cure recipe with FKM. The coefficient of friction increased with increasing FKM opposed to the expectation. On the other hand, the specific wear rate (Ws) changed marginally with increasing content of FKM. In HNBR-CBT hybrids the HNBR was the matrix, irrespective to the rather high CBT content. Both the partly and mostly polymerized CBT ((p)CBT and pCBT, respectively) in the hybrids worked as active filler and thus increased the stiffness and hardness. The COF and Ws decreased with increasing CBT content. The FEM results in respect to COF achieved on systems possessing very different structures and thus properties (EPDM_30CB, HNBR-FKM 100-100 and HNBR-(p)CBT 100-100, respectively) were in accordance with the experimental results. This verifies that FEM can be properly used to consider the complex viscoelastic behaviour of rubber materials under dry rolling condition.

Product development with end-user integration is not an end in itself but a logical necessity due to divergent types of knowledge of the user and the developer of a product. While the user is an expert in regard to the product’s usage the developer is an expert in the product’s construction and functioning. For the development of high-end products both types of expertises were a prerequisite at all times. The efficient and throughout integration of the user’s perspective into existing product development approaches is the core of user-centred product development. Activities that are the basic ingredient of just any user-centred development approach can be roughly categorized into analysis, design and evaluation activities. Research and practice prove the early integration of real end-users within those activities to add significant and sustainable value to product innovation. The instrumental, methodological and procedural impact of globalization tendencies, on modern user-centred product development in particular, is the primary research focus of the field of cross-cultural user-centred product development. This research aims at the further advancement of the methodological foundations of cross-cultural user centred product development approaches based on a stabile and profound theoretical basis. Primary research objects are established user-analysis methodologies, which are mainly based on Western concepts and theories, and their applicability in disparate cultural contexts of the Far East (China and Korea in particular). For facilitating the adaptation of abstract method characteristics to the situational context of method application as foundation of cross-cultural methodological advancement, a model of method localization was developed. In alignment with internationalization and localization activities within product development processes, a framework for localizing user-centred methodologies was developed. Equivalent to internationalization activities of real product development, the abstraction of method traits from specific methodologies is a necessity in a first step. Methodological adaptation with the primary objective of optimizing situational application of a methodology is to be done in a second step – the step of method-localization. This model of method localization and its underlying theories and principles were tested within an extensive empirical study in Germany, China and Korea. Within this study the applicability of six distinct user-centred product development methodologies, each with its very own profile of abstract method traits, was tested with 248 participants in total. Results clearly back the basic hypothesis of method-localization, i.e. that the application of a user-centred methodology rises and falls with the alignment of its characteristic traits with the cross-cultural application context. Beyond, applicability-influencing factors identified within this study could be proven to be valid indicators of adaptation-necessities and –potentials of user-centred product development methodologies.

The manuscript divides in 7 chapters. Chapter 2 briefly introduces the reader to the elementary measures of classical continuum mechanics and thus allows to familiarize with the employed notation. Furthermore, deeper insight of the proposed first-order computational homogenization strategy is presented. Based on the need for a discrete representative volume element (rve), Chapter 3 focuses on a proper rve generation algorithm. Therein, the algorithm itself is described in detail. Additionally, we introduce the concept of periodicity. This chapter finalizes by granting multiple representative examples. A potential based soft particle contact method, used for the computations on the microscale level, is defined in Chapter 4. Included are a description of the used discrete element method (dem) as well as the applied macroscopically driven Dirichlet boundary conditions. The chapter closes with the proposition of a proper solution algorithm as well as illustrative representative examples. Homogenization of the discrete microscopic quantities is discussed in Chapter 5. Therein, the focus is on the upscaling of the aggregate energy as well as on the derivation of related macroscopic stress measures. Necessary quantities for coupling between a standard finite element method and the proposed discrete microscale are presented in Chapter 6. Therein, we tend to the derivation of the macroscopic tangent, necessary for the inclusion into the standard finite element programs. Chapter 7 focuses on the incorporation of inter-particle friction. We select to derive a variational based formulation of inter-particle friction forces, founded on a proposed reduced incremental potential. This contribution is closed by providing a discussion as well as an outlook.

Within this thesis we present a novel approach towards the modeling of strong discontinuities in a three dimensional finite element framework for large deformations. This novel finite element framework is modularly constructed containing three essential parts: (i) the bulk problem, ii) the cohesive interface problem and iii) the crack tracking problem. Within this modular design, chapter 2 (Continuous solid mechanics) treats the behavior of the bulk problem (i). It includes the overall description of the continuous kinematics, the required balance equations, the constitutive setting and the finite element formulation with its corresponding discretization and required solution strategy for the emerging highly non-linear equations. Subsequently, we discuss the modeling of strong discontinuities within finite element discretization schemes in chapter 3 (Discontinuous solid mechanics). Starting with an extension of the continuous kinematics to the discontinuous situation, we discuss the phantom-node discretization scheme based on the works of Hansbo & Hansbo. Thereby, in addition to a comparison with the extended finite element method (XFEM), importance is attached to the technical details for the adaptive introduction of the required discontinuous elements: The splitting of finite elements, the numerical integration, the visualization and the formulation of geometrical correct crack tip elements. In chapter 4 (The cohesive crack concept), we consider the treatment of cohesive process zones and the associated treatment of cohesive tractions. By applying this approach we are able to merge all irreversible, crack propagation accompanying, failure mechanisms into an arbitrary traction separation relation. Additionally, this concept ensures bounded crack tip stresses and allows the use of stress-based failure criteria for the determination of crack growth. In summary, the use of the discontinuous elements in conjunction with cohesive traction separation allows the mesh-independent computation of crack propagation along pre-defined crack paths. Therefore, this combination is defined as the interface problem (ii) and represents the next building block in the modular design of this thesis. The description and the computation of the evolving crack surface, based on the actual status of a considered specimen is the key issue of chapter 5 (Crack path tracking strategies). In contrast to the two-dimensional case, where tracking the path in a C0-continuous way is straightforward, three-dimensional crack path tracking requires additional strategies. We discuss the currently available approaches regarding this issue and further compare the approaches by means of usual quality measures. In the modular design of this thesis these algorithms represent the last main part which is classified as the crack tracking problem (iii). Finally chapter 6 (Representative numerical examples) verifies the finite element tool by comparisons of the computational results which experiments and benchmarks of engineering fracture problems in concrete. Afterwards the finite element tool is applied to model folding induced fracture of geological structures.

Sublimation (Evaporation) is widely used in different industrial applications. The important applications are the sublimation (evaporation) of small particles (solid and liquid), e.g., spray drying and fuel droplet evaporation. Since a few decades, sublimation technology has been used widely together with aerosol technology. This combination is aiming to get various products with desired compositions and morphologies. It can be used in the fields of nanoparticles generation, particle coating through physical vapor deposition (PVD) and particle structuring. This doctoral thesis deals with the experimental and theoretical investigations of sublimation (evaporation) kinetics of fine aerosol particles (droplets). The experimental study was conducted in a test plant including on-line control of the most important paramters, such as heating temperature, gas flow and pressure. On-line and in-line particle measurements (Optical sensor, APS) were employed. Relevant parameters in sublimation (evaporation) such as heating temperature, particle concentration and aerosol residence time were investigated. Polydispersed particles (droplets) were introduced into the test plant as precursor aerosols. Two kinds of materials were used as test materials, including inorganic particles of NH4Cl and organic particles of DEHS. NH4Cl particles with smooth surface and porous structure were put into the experiments, respectively. The influence of the particle morphology on the sublimation process was studied. Basing on the experiments, different theoretical models were developed. The simulation results under different parameters were compared with experimental results. The change of concentration of particles was specially discussed. The discussion was focused on the relationship of the total particle concentration and the change of single particles with diverse initial diameters. The study of the sublimation kinetics of particles with different morphologies and different specific surface areas was carried out. The factor of increased surface area on the sublimation process was taken into the simulation and the results were compared with experimental results. A sublimation (evaporation) kinetics was investigated in this thesis. Basing on the property of a material, such as molecular weight, molecular size and vapor pressure, the sublimation (evaporation) kinetics was described. The optimum sublimation (evaporation) conditions with respect to the material properties were advanced. A Phase Transition Effect during the sublimation (evaporation) was found, which describes the increase of the large particles on the cost of small particles. A similar effect is observed in crystal suspension (called Ostwald ripening) but with another physical background. In order to meet the need of in-line particle measurement, a hot gas sensor (O.P.C.) was developed in this study, for measuring the particle size and the size distribution of an aerosol. With the newly developed measuring cell, the operating conditions of the aerosol could be increased up to 500°C.

Proprietary polyurea based thermosets (3P resins) were produced from polymeric methylene diphenylisocyanate (PMDI) and water glass (WG) using a phosphate emulsifier. Polyisocyanates when combined with WG in presence of suitable emulsifier result in very versatile products. WG acts in the resulting polyurea through a special sol-gel route as a cheap precursor of the silicate (xerogel) filler produced in-situ. The particle size and its distribution of the silicate are coarse and very broad, respectively, which impart the mechanical properties of the 3P systems negatively. The research strategy was to achieve initially a fine water in oil type (W/O = WG/PMDI) emulsion by “hybridising” the polyisocyanate with suitable thermosetting resins (such as vinylester (VE), melamine/formaldehyde (MF) or epoxy resin (EP)). As the presently used phosphate emulsifiers may leak into the environment, the research work was directed to find such “reactive” emulsifiers which can be chemically built in into the final polyurea-based thermosets. The progressive elimination of the organic phosphate, following the European Community Regulation on chemicals and their safe use (REACH), was studied and alternative emulsifiers for the PMDI/WG systems were found. The new hybrid systems in which the role of the phosphate emulsifier has been overtaken by suitable resins (VE, EP) or additives (MF) are designed 2P resins. Further, the cure behaviour (DSC, ATR-IR), chemorheology (plate/plate rheometer), morphology (SEM, AFM) and mechanical properties (flexure, fracture mechanics) have been studied accordingly. The property upgrade targeted not only the mechanical performances but also thermal and flame resistance. Therefore, emphasis was made to improve the thermal and fire resistance (e.g. TGA, UL-94 flammability test) of the in-situ filled hybrid resins. Improvements on the fracture mechanical properties as well as in the flexural properties of the novel 3P and 2P hybrids were obtained. This was accompanied in most of the cases by a pronounced reduction of the polysilicate particle size as well as by a finer dispersion. Further the complex reaction kinetics of the reference 3P was studied, and some of the main reactions taking place during the curing process were established. The pot life of the hybrid resins was, in most of the cases, prolonged, which facilitates the posterior processing of such resins. The thermal resistance of the hybrid resins was also enhanced for all the novel hybrids. However, the hybridization strategy (mostly with EP and VE) did not have satisfactory results when taking into account the fire resistance. Efforts will be made in the future to overcome this problem. Finally it was confirmed that the elimination of the organic phosphate emulsifier was feasible, obtaining the so called 2P hybrids. Those, in many cases, showed improved fracture mechanical, flexural and thermal resistance properties as well as a finer and more homogeneous morphology. The novel hybrid resins of unusual characteristics (e.g. curing under wet conditions and even in water) are promising matrix materials for composites in various application fields such as infrastructure (rehabilitation of sewers), building and construction (refilling), transportation (coating of vessels, pipes of improved chemical resistance)…

Dry Sliding and Rolling Tribotests of Carbon Black Filled EPDM Elastomers and Their FE Simulations
(2008)

Unlubricated sliding systems being economic and environmentally benign are already realized in bearings, where dry metal-plastic sliding pairs successfully replace lubricated metal-metal ones. Nowadays, a considerable part of the tribological research concentrates to realize unlubricated elastomer-metal sliding systems, and to extend the application field of lubrication-free slider elements. In this Thesis, characteristics of the dry sliding and friction are investigated for elastomer-metal sliding pairs. In this study ethylene-propylene-diene rubbers (EPDM) with and without carbon black (CB) filler were used. The filler content of the EPDMs was varied: EPDMs with 0-, 30-, 45- and 60 part per hundred rubber (phr) CB amount were investigated. Quasistatic tension and compression tests and dynamic mechanical thermal analysis (DMTA) were carried out to analyze the static a viscoelastic behavior of the EPDMs. The tribological properties of the EPDMs were investigated using dry roller (metal) – on – plate (rubber) type tests (ROP). During the ROP tests the normal load was varied. The coefficient of friction (COF) and the temperature were registered online during the tests, the loss volumes were determined after certain test durations. The worn surfaces of the rubbers and of the steel counterparts were analyzed using scanning electron microscope (SEM) to determine the wear mechanisms. Because possible chemical changes may take place during dry sliding due to the elevated contact temperature the chemical composition of the surfaces was also analyzed before and after the tribotests. For the latter investigations X-ray photoelectron spectroscopy (XPS), sessil drop tests and Raman spectroscopy were used. In addition, the dry sliding tribotests were simulated using finite element (FE) codes for the better understanding of the related wear mechanisms. Finally, as the internal damping effect of the elastomers plays a great role in the sliding wear process, their viscoelasticity has been taken into account. The effect of viscoelasticity was shown on example of rolling friction. To study the rolling COF for the EPDM with 30 phr CB (EPDM 30) an FE model was created which considered the viscoelastic behavior of the rubber during rolling. The results showed that the incorporated CB enhanced the mechanical and tribological properties (both COF and wear rate have been reduced) of the EPDMs. Further on, the CB content of the EPDM influences fundamentally the observed wear mechanisms. The wear characteristics changed also with the applied normal load. In case of the EPDM 30 a rubber tribofilm was found on the steel counterpart when tests were performed at high normal loads. Analysis of the chemical composition of the surfaces before and after the wear tests does not result in notable changes. It was demonstrated, that the FE method is powerful tool to model both, the dry sliding and rolling performances of elastomers.

The main motivation of this contribution is to introduce a computational laboratory to analyse defects and fractures at the sub--micro scale. To this end, we have attempted to present a continuum--atomistic multiscale algorithm for the analysis of crystalline deformation, i.e. we have combined the above--mentioned Cauchy--Born rule within a finite element approximation (FEM) on the continuum region with a molecular dynamics (MD) resolution on the atomistic domain. The aim is twofold: on the one hand the stability, i.e. validity of the Cauchy--Born rule and its transition to non--affine deformation at the micron--scale is studied with the help of molecular dynamics approach to capture fine--scales features; on the other hand a horizontal FEM/MD, i.e. continuum atomistic coupling, is envisaged in order to study representative cases of crystalline defects. To cope with the latter we have introduced a horizontal coupling method for continuum--atomistic analysis.

The present thesis is concerned with the simulation of the loading behaviour of both hybrid lightweight structures and piezoelectric mesostructures, with a special focus on solid interfaces on the meso scale. Furthermore, an analytical review on bifurcation modes of continuum-interface problems is included. The inelastic interface behaviour is characterised by elastoplastic, viscous, damaging and fatigue-motivated models. For related numerical computations, the Finite Element Method is applied. In this context, so-called interface elements play an important role. The simulation results are reflected by numerous examples which are partially correlated to experimental data.

In the present contribution, a general framework for the completely consistent integration of nonlinear dissipative dynamics is proposed, that essentially relies on Finite Element methods in space and time. In this context, fully flexible structures as well as hybrid systems which consist of rigid bodies and inelastic flexible parts are considered. Thereby, special emphasis is placed on the resulting algorithmic fulfilment of fundamental balance equations, and the excellent performance of the presented concepts is demonstrated by means of several representative numerical examples, involving in particular finite elasto-plastic deformations.

The main goal of this work is to model size effects, as they occur in materials with an intrinsic microstructure at the consideration of specimens that are not by orders larger than this microstructure. The micromorphic continuum theory as a generalized continuum theory is well suited to account for the occuring size effects. Thereby additional degrees of freedoms capture the independent deformations of these microstructures, while they provide additional balance equation. In this thesis, the deformational and configurational mechanics of the micromorphic continuum is exploited in a finite-deformation setting. A constitutive and numerical framework is developed, in which also the material-force method is advanced. Furthermore the multiscale modelling of thin material layers with a heterogeneous substructure is of interest. To this end, a computational homogenization framework is developed, which allows to obtain the constitutive relation between traction and separation based on the properties of the underlying micromorphic mesostructure numerically in a nested solution scheme. Within the context of micromorphic continuum mechanics, concepts of both gradient and micromorphic plasticity are developed by systematically varying key ingredients of the respective formulations.

Thermoelasticity represents the fusion of the fields of heat conduction and elasticity in solids and is usually characterized by a twofold coupling. Thermally induced stresses can be determined as well as temperature changes caused by deformations. Studying the mutual influence is subject of thermoelasticity. Usually, heat conduction in solids is based on Fourier’s law which describes a diffusive process. It predicts unnatural infinite transmission speed for parts of local heat pulses. At room temperature, for example, these parts are strongly damped. Thus, in these cases most engineering applications are described satisfactorily by the classical theory. However, in some situations the predictions according to Fourier’s law fail miserable. One of these situations occurs at temperatures near absolute zero, where the phenomenon of second sound1 was discovered in the 20th century. Consequently, non-classical theories experienced great research interest during the recent decades. Throughout this thesis, the expression “non-classical” refers to the fact that the constitutive equation of the heat flux is not based on Fourier’s law. Fourier’s classical theory hypothesizes that the heat flux is proportional to the temperature gradient. A new thermoelastic theory, on the one hand, needs to be consistent with classical thermoelastodynamics and, on the other hand, needs to describe second sound accurately. Hence, during the second half of the last century the traditional parabolic heat equation was replaced by a hyperbolic one. Its coupling with elasticity leads to non-classical thermomechanics which allows the modeling of second sound, provides a passage to the classical theory and additionally overcomes the paradox of infinite wave speed. Although much effort is put into non-classical theories, the thermoelastodynamic community has not yet agreed on one approach and a systematic research is going on worldwide.Computational methods play an important role for solving thermoelastic problems in engineering sciences. Usually this is due to the complex structure of the equations at hand. This thesis aims at establishing a basic theory and numerical treatment of non-classical thermoelasticity (rather than dealing with special cases). The finite element method is already widely accepted in the field of structural solid mechanics and enjoys a growing significance in thermal analyses. This approach resorts to a finite element method in space as well as in time.

The main concern of this contribution is the computational modeling of biomechanically relevant phenomena. To minimize resource requirements, living biomaterials commonly adapt to changing demands. One way to do so is the optimization of mass. For the modeling of biomaterials with changing mass, we distinguish between two different approaches: the coupling of mass changes and deformations at the constitutive level and at the kinematic level. Mass change at the constitutive level is typically realized by weighting the free energy function with respect to the density field, as experimentally motivated by Carter and Hayes [1977] and computationally realized by Harrigan and Hamilton [1992]. Such an ansatz enables the simulation of changes in density while the overall volume remains unaffected. In this contribution we call this effect remodeling. Although in principle applicable for small and large strains, this approach is typically adopted for hard tissues, e.g. bone, which usually undergo small strain deformations. Remodeling in anisotropic materials is realized by choosing an appropriate anisotropic free energy function. <br> Within the kinematic coupling, a changing mass is characterized through a multiplicative decomposition of the deformation gradient into a growth part and an elastic part, as first introduced in the context of plasticity by Lee [1969]. In this formulation, which we will refer to as growth in the following, mass changes are attributed to changes in volume while the material density remains constant. This approach has classically been applied to model soft tissues undergoing large strains, e.g. the arterial wall. The first contribution including this ansatz is the work by Rodriguez, Hoger and McCulloch [1994]. To model anisotropic growth, an appropriate anisotropic growth deformation tensor has to be formulated. In this contribution we restrict ourselves to transversely isotropic growth, i.e., growth characterized by one preferred direction. On that account, we define a transversely isotropic growth deformation tensor determined by two variables, namely the stretch ratios parallel and perpendicular to the characteristic direction. <br> Another method of material optimization is the adaption of the inner structure f a material to its loading conditions. In anisotropic materials this can be realized by a suitable orientation of the material directions. For example, the trabeculae in the human femur head are oriented such that they can carry the daily loads with an optimum mass. Such a behavior can also be observed in soft tissues. For instance, the fibers of muscles and the collagen fibers in the arterial wall are oriented along the loading directions to carry a maximum of mechanical load. If the overall loading conditions change, for instance during a balloon angioplasty or a stent implantation, the material orientation readapts, which we call reorientation. The anisotropy type in biomaterials is often characterized by fiber reinforcement. A particular subclass of tissues, which includes muscles, tendons and ligaments, is featured by one family of fibers. More complex microstructures, such as arterial walls, show two fiber families, which do not necessarily have to be perpendicular. Within this contribution we confine ourselves to the first case, i.e., transversely isotropic materials indicated by one characteristic direction. The reorientation of the fiber direction in biomaterials is commonly smooth and continuous. For transverse isotropy it can be described by a rotation of the characteristic direction. Analogous to the theory of shells, we additionally exclude drilling rotations, see also Menzel [2006]. However, the driving force for these reorientation processes is still under discussion. Mathematical considerations promote strain driven reorientations. As discussed, for instance, in Vianello [1996], the free energy reaches a critical state for coaxial stresses and strains. For transverse isotropy, it can be shown that this can be achieved if the characteristic direction is aligned with a principal strain direction. From a biological point of view, depending on the kind of material (i.e. bone, muscle tissue, cartilage tissue, etc.), both strains and stresses can be suggested as stimuli for reorientation. Thus, whithin this contribution both approaches are investigated. <br> In contrast to previous works, in which remodeling, growth and reorientation are discussed separately, the present work provides a framework comprising all of the three mentioned effects at once. This admits a direct comparison how and on which level the individual phenomenon is introduced into the material model, and which influence it has on the material behavior. For a uniform description of the phenomenological quantities an internal variable approach is chosen. Moreover, we particularly focus on the algorithmic implementation of the three effects, each on its own, into a finite element framework. The nonlinear equations on the local and the global level are solved by means of the Newton-Raphson scheme. Accordingly, the local update of the internal variables and the global update of the deformation field are consistently linearized yielding the corresponding tangent moduli. For an efficient implementation into a finite element code, unitized update algorithms are given. The fundamental characteristics of the effects are illustrated by means of some representative numerical simulations. Due to the unified framework, combinations of the individual effects are straightforward.

The main goal of this work is to examine various aspects of `inelastic continuum mechanics': first, fundamental aspects of a general finite deformation theory based on a multiplicative decomposition of the deformation gradient with special emphasis on the incompatibility of the so-called intermediate configuration are discussed in detail. Moreover, various balance of linear momentum representations together with the corresponding volume forces are derived in a configurational mechanics context. Subsequent chapters are consequently based on these elaborations so that the applied multiplicative decomposition generally serves as a fundamental modelling concept in this work; after generalised strain measures are introduced, a kinematic hardening model coupled with anisotropic damage, a substructure evolution framework as well as two different growth and remodelling formulations for biological tissues are presented.

Elastomeric and other rubber-like materials are often simultaneously exposed to short- and long-time loads within engineering applications. When aiming at establishing a general simulation tool for viscoelastic media over these different time scales, a suitable material model and its corresponding material parameters can only be determined if an appropriate number of experimental data is taken into account. In this work an algorithm for the identification of material parameters for large strain viscoelasticity is presented. Thereby, data of multiple experiments are considered. Based on this method the experimental loading intervals for long-time experiments can be shortened in time and the parameter identification procedure is now referred to experimental data of tests under short- and long-time loads without separating the parameters due to these different time scales. The employed viscoelastic material law is based on a nonlinear evolution law and valid far from thermodynamic equilibrium. The identification is carried out by minimizing a least squares functional comparing inhomogeneous displacement fields from experiments and FEM simulations at given (measured) force loads. Within this optimization procedure all material parameters are identified simultaneously by means of a gradient based method for which a semi-analytical sensitivity analysis is calculated. Representative numerical examples are referred to measured data for different polyurethanes. In order to show the general applicability of the identification method for multiple tests, in the last part of this work the parameter identification for small strain plasticity is presented. Thereby three similar test programs on three specimen of the aluminum alloy AlSi9Cu3 are analyzed, and the parameter sets for the respective individual identifications, and for the combination of all tests in one identification, is compared.

In the present work the modelling and numerical treatment of discontinuities in thermo-mechanical solids is investigated and applied to diverse physical problems. From this topic a structure for this work results, which considers the formulation of thermo-mechanical processes in continua in the first part and which forms the mechanical and thermodynamical framework for the description of discontinuities and interfaces, that is performed in the second part. The representation of the modelling of solid materials bases on the detailed derivation of geometrically nonlinear kinematics, that yields different strain and stress measures for the material and spatial configuration. Accordingly, this results in different formulations of the mechanical and thermodynamical balance equations. On these foundations we firstly derive by means of the concepts of the plasticity theory an elasto-plastic prototype-model, that is extended subsequently. In the centre of interest is the formulation of damage models in consideration of rate-dependent material behaviour. In the next step follows the extension of the isothermal material models to thermo-mechanically coupled problems, whereby also the special case of adiabatic processes is discussed. Within the representation of the different constitutive laws, the importance is attached to their modular structure. Moreover, a detailed discussion of the isothermal and the thermo-mechanically coupled problem with respect to their numerical treatment is performed. For this purpose the weak forms with respect to the different configurations and the corresponding linearizations are derived and discretized. The derived material models are highlighted by numerical examples and also proved with respect to plausibility. In order to take discontinuities into account appropriate kinematics are introduced and the mechanical and thermodynamical balance equations have to be modified correspondingly. The numerical description is accomplished by so-called interface-elements, which are based on an adequate discretization. In this context two application fields are distinguished. On the one side the interface elements provide a tool for the description of postcritical processes in the framework of localization problems, which include material separation and therefore they are appropriate for the description of cutting processes. Here in turn one has to make the difference between the domain-dependent and the domain-independent formulation, which mainly differ in the definition of the interfacial strain measure. On the other side material properties are attached to the interfaces whereas the spatial extension is neglectable. A typical application of this type of discontinuities can be found in the scope of the modelling of composites, for instance. In both applications the corresponding thermo-mechanical formulations are derived. Finally, the different interface formulations are highlighted by some numerical examples and they are also proved with respect to plausibility.

Wetting of a solid surface with liquids is an important parameter in the chemical engineering process such as distillation, absorption and desorption. The degree of wetting in packed columns mainly contributes in the generating of the effective interfacial area and then enhancing of the heat and mass transfer process. In this work the wetting of solid surfaces was studied in real experimental work and virtually through three dimensional CFD simulations using the multiphase flow VOF model implemented in the commercial software FLUENT. That can be used to simulate the stratified flows [1]. The liquid rivulet flow which is a special case of the film flow and mostly found in packed columns has been discussed. Wetting of a solid flat and wavy metal plate with rivulet liquid flow was simulated and experimentally validated. The local rivulet thickness was measured using an optically assisted mechanical sensor using a needle which is moved perpendicular to the plate surface with a step motor and in the other two directions using two micrometers. The measured and simulated rivulet profiles were compared to some selected theoretical models founded in the literature such as Duffy & Muffatt [2], Towell & Rothfeld [3] and Al-Khalil et al. [4]. The velocity field in a cross section of a rivulet flow and the non-dimensional maximum and mean velocity values for the vertical flat plate was also compared with models from Al-Khalil et al. [4] and Allen & Biggin [5]. Few CFD simulations for the wavy plate case were compared to the experimental findings, and the Towel model for a flat plate [3]. In the second stage of this work 3-D CFD simulations and experimental study has been performed for wetting of a structured packing element and packing sheet consisting of three elements from the type Rombopak 4M, which is a product of the company Kuhni, Switzerland. The hydrodynamics parameters of a packed column, e. i. the degree of wetting, the interfacial area and liquid hold-up have been depicted from the CFD simulations for different liquid systems and liquid loads. Flow patterns on the degree of wetting have been compared to that of the experiments, where the experimental values for the degree of wetting were estimated from the snap shooting of the flow on the packing sheet in a test rig. A new model to describe the hydrodynamics of packed columns equipped with Rombopak 4M was derived with help of the CFD–simulation results. The model predicts the degree of wetting, the specific or interfacial area and liquid hold-up at different flow conditions. This model was compared to Billet & Schultes [6], the SRP model Rocha et al. [7-9], to Shi & Mersmann [10] and others. Since the pressure drop is one of the most important parameter in packed columns especially for vacuum operating columns, few CFD simulations were performed to estimate the dry pressure drop in a structured and flat packing element and were compared to the experimental results. It was found a good agreement from one side, between the experimental and the CFD simulation results, and from the other side between the simulations and theoretical models for the rivulet flow on an inclined plate. The flow patterns and liquid spreading behaviour on the packing element agrees well with the experimental results. The VOF (Volume of Fluid) was found very sensitive to different liquid properties and can be used in optimization of the packing geometries and revealing critical details of wetting and film flow. An extension of this work to perform CFD simulations for the flow inside a block of the packing to get a detailed picture about the interaction between the liquid and packing surfaces is recommended as further perspective.

The primary object of this work is the development of a robust, accurate and efficient time integrator for the dynamics of flexible multibody systems. Particularly a unified framework for the computational dynamics of multibody systems consisting of mass points, rigid bodies and flexible beams forming open kinematic chains or closed loop systems is developed. In addition, it aims at the presentation of (i) a focused survey of the Lagrangian and Hamiltonian formalism for dynamics, (ii) five different methods to enforce constraints with their respective relations, and (iii) three alternative ways for the temporal discretisation of the evolution equations. The relations between the different methods for the constraint enforcement in conjunction with one specific energy-momentum conserving temporal discretisation method are proved and their numerical performances are compared by means of theoretical considerations as well as with the help of numerical examples.

With the burgeoning computing power available, multiscale modelling and simulation has these days become increasingly capable of capturing the details of physical processes on different scales. The mechanical behavior of solids is oftentimes the result of interaction between multiple spatial and temporal scales at different levels and hence it is a typical phenomena of interest exhibiting multiscale characteristic. At the most basic level, properties of solids can be attributed to atomic interactions and crystal structure that can be described on nano scale. Mechanical properties at the macro scale are modeled using continuum mechanics for which we mention stresses and strains. Continuum models, however they offer an efficient way of studying material properties they are not accurate enough and lack microstructural information behind the microscopic mechanics that cause the material to behave in a way it does. Atomistic models are concerned with phenomenon at the level of lattice thereby allowing investigation of detailed crystalline and defect structures, and yet the length scales of interest are inevitably far beyond the reach of full atomistic computation and is rohibitively expensive. This makes it necessary the need for multiscale models. The bottom line and a possible avenue to this end is, coupling different length scales, the continuum and the atomistics in accordance with standard procedures. This is done by recourse to the Cauchy-Born rule and in so doing, we aim at a model that is efficient and reasonably accurate in mimicking physical behaviors observed in nature or laboratory. In this work, we focus on concurrent coupling based on energetic formulations that links the continuum to atomistics. At the atomic scale, we describe deformation of the solid by the displaced positions of atoms that make up the solid and at the continuum level deformation of the solid is described by the displacement field that minimize the total energy. In the coupled model, continuum-atomistic, a continuum formulation is retained as the overall framework of the problem and the atomistic feature is introduced by way of constitutive description, with the Cauchy-Born rule establishing the point of contact. The entire formulation is made in the framework of nonlinear elasticity and all the simulations are carried out within the confines of quasistatic settings. The model gives direct account to measurable features of microstructures developed by crystals through sequential lamination.

Nowadays piezoelectric and ferroelectric materials are becoming more and more an interesting part of smart materials in scientific and engineering applications. Precision machining in manufacturing, micropositioning in metrology, common rail systems with piezo fuel injection control in automobile industry, and ferroelectric random access memories (FRAM) in microelectromechanical systems (MEMS) besides commercial piezo actuators and sensors can be very good examples for the application of piezoceramic and ferroelectric materials. In spite of having good characteristics, piezoelectric and ferroelectric materials have significant nonlinearities, which limit the applications in high performance usage. Domain switching (ferroelastic or ferroelectric) is the main reason for the nonlinearity of ferroelectric materials. External excessive electromechanical loads (mechanical stress and electric field) are driving forces for domain switching. In literature, various important experiments related to the non-linear properties of piezoelectric and ferroelectric materials are reported. Simulations of nonlinear properties of piezoelectric and ferroelectric materials based on physical insights of the material have been performed during the last two decades by using micromechanical and phenomenological models. The most significant experiments and models are deeply discussed in the literature survey. In this thesis the nonlinear behaviour of tetragonal perovskite type piezoceramic materials is simulated theoretically using two and three dimensional micromechanical models which are based on physical insights of the material. In the simulations a bulk piezoceramic material which has numerous grains is considered. Each grain has random orientation in properties of polarization and strain. Randomness of orientations is given by Euler angles equally distributed between \(0\) and \(2\pi\). Each element in the micromechanical model has been assumed to have the same properties of the real piezoelectric grain. In the first part of the simulations, quasi-static characteristics of piezoelectric materials are investigated by applying cyclic, rate independent, bipolar, uni-axial and external electrical loading with an amplitude of 2 kV/mm gradually starting from zero value in virgin state. Moreover, the simulations are undertaken for these materials which are subjected to quasi-static, uni-polar, uni-axial mechanical stress, namely compressive stress. The calculations are performed at each element based on linear constitutive equations, nonlinear domain switching and a probability theory for domain switching. In order to fit the simulations to the experimental data, some parameters such as spontaneous polarization, spontaneous strain, piezoelectric and dielectric constants are chosen from literature. The domain switching of each grain is determined by an electromechanical energy criterion. Depending on the actual energy related to a critical energy a certain probability is introduced for domain switching of the polarization direction. Same energy levels are assumed in the electromechanical energy relation for different types of domain switching like 90º and 180º for perovskite type tetragonal or 70.5º and 109.5º for rhombohedral microstructures. It is assumed that intergranular effects between grains can be modelled by such probability functions phenomenologically. The macroscopic response of the material to the applied electromechanical loading is calculated by using Euler transformations and averaging the individual grains. Properties of piezoelectric materials under fixed mechanical stresses are also investigated by applying constant compressive stress in addition to cyclic electrical loading in the simulations. Compressive stress is applied and kept constant before cyclic bipolar electrical loading is implemented. In the following chapters, a three-dimensional micromechanical model is extended for the simulation of the rate dependent properties of certain perovskite type tetragonal piezoelectric materials. The frequency dependent micromechanical model is now not only based on linear constitutive and nonlinear domain switching but also linear kinetics theories. The material is loaded both electrically and mechanically in separate manner with an alternating electrical voltage and mechanical stress values of various moderate frequencies, which are in the order of 0.01 Hz to 1 Hz. Electromechanical energy equation in combination with a probability function is again used to determine the onset of the domain switching inside the grains. The propagation of the domain wall during the domain switching process in grains is modelled by means of linear kinetics relations after a new domain nucleates. Electric displacement versus electric field hysteresis loops, mechanical strain versus mechanical stress and electric displacement versus mechanical stress for different frequencies and amplitudes of the alternating electric fields and compressive stresses are simulated and presented. A simple micromechanical model without using probabilistic approach is compared with the one that takes it into account. Both models give important insights into the rate dependency of piezoelectric materials, which was observed in some experiments reported in the literature. Intergranular effects are other significant factors for nonlinearities of polycrystalline ferroelectric materials. Even piezoelectric actuators and sensors show nonlinearities when they are operated with electrical loading, which is much lower than the coercive electric field level. Intergranular effects are the main cause of such small hysteresis loops. In the corresponding chapter, two basic field effects which are electrical and mechanical are taken into account for the consideration of intergranular effects micromechanically in the simulations of the two dimensional model. Therefore, a new electromechanical energy equation for the threshold of domain switching is introduced to explain nonlinearities stemming from both domain switching and intergranular effects. The material parameters like coercive electric field and critical spontaneous polarization or strain quantities are not implemented in the electromechanical energy relation. But, this relation contains new parameters which consider both mechanical and electrical field characteristics of neighbouring elements. By using this new model, mechanical strain versus electric field butterfly curves under small electrical loading conditions are also simulated. Hence, a rate dependent concept is applied in butterfly curves by means of linear kinetics model. As a result, the simulations have better matching with corresponding experiments in literature. In the next step, the model can be extended in three dimensional case and the parameters of electromechanical energy relation can be improved in order to get better simulations of nonlinear properties of polycrystalline piezoelectric materials.

Discontinuities can appear in different fields of mechanics. Some examples where discontinuities arise are more obvious such as the formation of cracks. Other sources of discontinuities are less apparent such as interfaces between different materials. Furthermore continuous fields with steep gradients can also be considered as discontinuous fields. This work aims at the inclusion of arbitrary discontinuities within the finite element method. Although the finite element method is the most sophisticated numerical tool in modern engineering, the inclusion of discontinuities is still a challenging task. Traditionally within finite the framework of FE methods discontinuities are modeled explicitely by the construction of the mesh. Thus, when a fixed mesh is used, the position of the discontinuity is prescribed by the location of interelement boundaries and not by the physical situation. The simulation of crack growth requires a frequent adaption of the mesh and that can be a difficult and computationally expensive task. Thus a more flexible numerical approach is needed which leads to the mesh-independent representation of the discontinuity. A challenging field where the accurate description of discontinuities is of vital importance is the modeling of failure in engineering materials. The load capacity of a structure is limited by the material strength. If the load limit is exceeded failure zones arise and increase. Representative examples of failure mechanisms are are cracks in brittle materials or shear bands in metals or soils. Failure processes are often accompanied by a strain softening material behaviour (decreasing load carrying capacity with increasing strain at a material point). It is known that the inclusion of strain softening material behaviour within a continuum description requires regularization techniques to preserve the well- posedness of the governing equations. One possibility is the consideration of non-local or gradient terms in the constitutive equations but these approaches require a sufficiently fine discretization in the localization zone, which leads to a high numerical effort. If the extent of the failure zone and the failure process to the point of the development of discrete cracks is considered it seems reasonable to include strong discontinuities. In the framework of fracture mechanics the inclusion of displacement jumps is intuitively comprehensible. However, the modeling of localized failure processes demands the consideration of inelastic material behaviour. Cohesive zone models represent an approach which is especially suited for the incorporation within the finite element framework. It is supposed that cohesive tractions are transmitted between the discontinuity surfaces. These tractions are constitutively prescribed by a phenomenological traction separation law and thus allow for the modeling of different inelastic mechanisms, like micro-crack evolution, initiation of voids, plastic flow or crack bridging. The incorporation of a displacement discontinuity in combination with a cohesive traction separation law leads to a sound model to describe failure processes and crack propagation. Another area where the existence of discontinuities is not as obvious is the occurence of material interfaces, inclusions or holes. The accurate modeling of such internal interfaces is important to predict the mechanical behaviour of components. The present discontinuity is of different nature: the displacement field is continuous but there is a jump in the strains, which is denoted by the expression weak discontinuity. Usually in FE methods material interfaces are taken into account by the mesh construction. But if the structure exhibits multiple inclusions of complex geometry it can be advantageous if the interface does not have to be meshed. And when we look at at problems where the interface moves with time, e. g. phase transformation, the mesh-independent modeling of the weak discontinuities naturally holds major advantages. The greatest challenge in the modeling of discontinuities is their incorporation into numerical methods. The focus of the present work is the development, analysis and application of a finite element approach to model mesh-independent discontinuities. The method shall be robust and flexible to be applicable to both, strong and weak discontinuities.

In contrast to the spatial motion setting, the material motion setting of continuum mechanics is concerned with the response to variations of material placements of particles with respect to the ambient material. The material motion point of view is thus extremely prominent when dealing with defect mechanics to which it has originally been introduced by Eshelby more than half a century ago. Its primary unknown, the material deformation map is governed by the material motion balance of momentum, i.e. the balance of material forces on the material manifold in the sense of Eshelby. Material (configurational) forces are concerned with the response to variations of material placements of 'physical particles' with respect to the ambient material. Opposed to that, the common spatial (mechanical) forces in the sense of Newton are considered as the response to variations of spatial placements of 'physical particles' with respect to the ambient space. Material forces as advocated by Maugin are especially suited for the assessment of general defects as inhomogeneities, interfaces, dislocations and cracks, where the material forces are directly related to the classical J-Integral in fracture mechanics, see also Gross & Seelig. Another classical example of a material - or rather configurational - force is emblematized by the celebrated Peach-Koehler force, see e.g. the discussion in Steinmann. The present work is mainly divided in four parts. In the first part we will introduce the basic notions of the mechanics and numerics of material forces for a quasi-static conservative mechanical system. In this case the internal potential energy density per unit volume characterizes a hyperelastic material behaviour. In the first numerical example we discuss the reliability of the material force method to calculate the vectorial J-integral of a crack in a Ramberg-Osgood type material under mode I loading and superimposed T-stresses. Secondly, we study the direction of the single material force acting as the driving force of a kinked crack in a geometrically nonlinear hyperelastic Neo-Hooke material. In the second part we focus on material forces in the case of geometrically nonlinear thermo-hyperelastic material behaviour. Therefore we adapt the theory and numerics to a transient coupled problem, and elaborate the format of the Eshelby stress tensor as well as the internal material volume forces induced by the gradient of the temperature field. We study numerically the material forces in a bimaterial bar under tension load and the time dependent evolution of material forces in a cracked specimen. The third part discusses the material force method in the case of geometrically nonlinear isotropic continuum damage. The basic equations are similar to those of the thermo-hyperelastic problem but we introduce an alternative numerical scheme, namely an active set search algorithm, to calculate the damage field as an additional degree of freedom. With this at hand, it is an easy task to obtain the gradient of the damage field which induces the internal material volume forces. Numeric examples in this part are a specimen with an elliptic hole with different semi-axis, a center cracked specimen and a cracked disc under pure mode I loading. In the fourth part of this work we elaborate the format of the Eshelby stress tensor and the internal material volume forces for geometrically nonlinear multiplicative elasto-plasticity. Concerning the numerical implementation we restrict ourselves to the case of geometrically linear single slip crystal plasticity and compare here two different numerical methods to calculate the gradient of the internal variable which enters the format of the internal material volume forces. The two numerical methods are firstly, a node point based approach, where the internal variable is addressed as an additional degree of freedom, and secondly, a standard approach where the internal variable is only available at the integration points level. Here a least square projection scheme is enforced to calculate the necessary gradients of this internal variable. As numerical examples we discuss a specimen with an elliptic inclusion and an elliptic hole respectively and, in addition, a crack under pure mode I loading in a material with different slip angles. Here we focus on the comparison of the two different methods to calculate the gradient of the internal variable. As a second class of numerical problems we elaborate and implement a geometrically linear von Mises plasticity with isotropic hardening. Here the necessary gradients of the internal variables are calculated by the already mentioned projection scheme. The results of a crack in a material with different hardening behaviour under various additional T-stresses are given.

This thesis aims at an overall improvement of the diffusion coefficient predictions. For this reason the theoretical determination of diffusion, viscosity, and thermodynamics in liquid systems is discussed. Furthermore, the experimental determination of diffusion coefficients is also part of this work. All investigations presented are carried out for organic binary liquid mixtures. Diffusion coefficient data of 9 highly nonideal binary mixtures are reported over the whole concentration range at various temperatures, (25, 30, and 35) °C. All mixtures investigated in a Taylor dispersion apparatus consist of an alcohol (ethanol, 1-propanol, or 1-butanol) dissolved in hexane, cyclohexane, carbon tetrachloride, or toluene. The uncertainty of the reported data is estimated to be within 310-11 m2s-1. To compute the thermodynamic correction factor an excess Gibbs energy model is required. Therefore, the applicability of COSMOSPACE to binary VLE predictions is thoroughly investigated. For this purpose a new method is developed to determine the required molecular parameters such as segment types, areas, volumes, and interaction parameters. So-called sigma profiles form the basis of this approach which describe the screening charge densities appearing on a molecule’s surface. To improve the prediction results a constrained two-parameter fitting strategy is also developed. These approaches are crucial to guarantee the physical significance of the segment parameters. Finally, the prediction quality of this approach is compared to the findings of the Wilson model, UNIQUAC, and the a priori predictive method COSMO-RS for a broad range of thermodynamic situations. The results show that COSMOSPACE yields results of similar quality compared to the Wilson model, while both perform much better than UNIQUAC and COSMO-RS. Since viscosity influences also the diffusion process, a new mixture viscosity model has been developed on the basis of Eyring’s absolute reaction rate theory. The nonidealities of the mixture are accounted for with the thermodynamically consistent COSMOSPACE approach. The required model and component parameters are derived from sigma-profiles, which form the basis of the a priori predictive method COSMO-RS. To improve the model performance two segment parameters are determined from a least-squares analysis to experimental viscosity data, whereas a constraint optimisation procedure is applied. In this way the parameters retain their physical meaning. Finally, the viscosity calculations of this approach are compared to the findings of the Eyring-UNIQUAC model for a broad range of chemical mixtures. These results show that the new Eyring-COSMOSPACE approach is superior to the frequently employed Eyring-UNIQUAC method. Finally, on the basis of Eyring’s absolute reaction rate theory a new model for the Maxwell-Stefan diffusivity has been developed. This model, an extension of the Vignes equation, describes the concentration dependence of the diffusion coefficient in terms of the diffusivities at infinite dilution and an additional excess Gibbs energy contribution. This energy part allows the explicit consideration of thermodynamic nonidealities within the modelling of this transport property. If the same set of interaction parameters, which has been derived from VLE data, is applied for this part and for the thermodynamic correction, a theoretically sound modelling of VLE and diffusion can be achieved. The influence of viscosity and thermodynamics on the model accuracy is thoroughly investigated. For this purpose diffusivities of 85 binary mixtures consisting of alkanes, cycloalkanes, halogenated alkanes, aromatics, ketones, and alcohols are computed. The average relative deviation between experimental data and computed values is approximately 8 % depending on the choice of the gE-model. These results indicate that this model is superior to some widely used methods. In summary, it can be said that the new approach facilitates the prediction of diffusion coefficients. The final equation is mathematically simple, universally applicable, and the prediction quality is as good as other models recently developed without having to worry about additional parameters, like pure component physical property data, self diffusion coefficients, or mixture viscosities. In contrast to many other models, the influence of the mixture viscosity can be omitted. Though a viscosity model is not required in the prediction of diffusion coefficients with the new equation, the models presented in this work allow a consistent modelling approach of diffusion, viscosity, and thermodynamics in liquid systems.

Within the last decades, a remarkable development in materials science took place -- nowadays, materials are not only constructed for the use of inert structures but rather designed for certain predefined functions. This innovation was accompanied with the appearance of smart materials with reliable recognition, discrimination and capability of action as well as reaction. Even though ferroelectric materials serve smartly in real applications, they also possess several restrictions at high performance usage. The behavior of these materials is almost linear under the action of low electric fields or low mechanical stresses, but exhibits strong non-linear response under high electric fields or mechanical stresses. High electromechanical loading conditions result in a change of the spontaneous polarization direction with respect to individual domains, which is commonly referred to as domain switching. The aim of the present work is to develop a three-dimensional coupled finite element model, to study the rate-independent and rate-dependent behavior of piezoelectric materials including domain switching based on a micromechanical approach. The proposed model is first elaborated within a two-dimensional finite element setting for piezoelectric materials. Subsequently, the developed two-dimensional model is extended to the three-dimensional case. This work starts with developing a micromechanical model for ferroelectric materials. Ferroelectric materials exhibit ferroelectric domain switching, which refers to the reorientation of domains and occurs under purely electrical loading. For the simulation, a bulk piezoceramic material is considered and each grain is represented by one finite element. In reality, the grains in the bulk ceramics material are randomly oriented. This property is taken into account by applying random orientation as well as uniform distribution for individual elements. Poly-crystalline ferroelectric materials at un-poled virgin state can consequently be characterized by randomly oriented polarization vectors. Energy reduction of individual domains is adopted as a criterion for the initiation of domain switching processes. The macroscopic response of the bulk material is predicted by classical volume-averaging techniques. In general, domain switching does not only depend on external loads but also on neighboring grains, which is commonly denoted as the grain boundary effect. These effects are incorporated into the developed framework via a phenomenologically motivated probabilistic approach by relating the actual energy level to a critical energy level. Subsequently, the order of the chosen polynomial function is optimized so that simulations nicely match measured data. A rate-dependent polarization framework is proposed, which is applied to cyclic electrical loading at various frequencies. The reduction in free energy of a grain is used as a criterion for the onset of the domain switching processes. Nucleation in new grains and propagation of the domain walls during domain switching is modeled by a linear kinetics theory. The simulated results show that for increasing loading frequency the macroscopic coercive field is also increasing and the remanent polarization increases at lower loading amplitudes. The second part of this work is focused on ferroelastic domain switching, which refers to the reorientation of domains under purely mechanical loading. Under sufficiently high mechanical loading, however, the strain directions within single domains reorient with respect to the applied loading direction. The reduction in free energy of a grain is used as a criterion for the domain switching process. The macroscopic response of the bulk material is computed for the hysteresis curve (stress vs strain) whereby uni-axial and quasi-static loading conditions are applied on the bulk material specimen. Grain boundary effects are addressed by incorporating the developed probabilistic approach into this framework and the order of the polynomial function is optimized so that simulations match measured data. Rate dependent domain switching effects are captured for various frequencies and mechanical loading amplitudes by means of the developed volume fraction concept which relates the particular time interval to the switching portion. The final part of this work deals with ferroelectric and ferroelastic domain switching and refers to the reorientation of domains under coupled electromechanical loading. If this free energy for combined electromechanical loading exceeds the critical energy barrier elements are allowed to switch. Firstly, hysteresis and butterfly curves under purely electrical loading are discussed. Secondly, additional mechanical loads in axial and lateral directions are applied to the specimen. The simulated results show that an increasing compressive stress results in enlarged domain switching ranges and that the hysteresis and butterfly curves flatten at higher mechanical loading levels.

This thesis deals with the development of thermoplastic polyolefin elastomers using recycled polyolefins and ground tyre rubber (GTR). The disposal of worn tyres and their economic recycling mean a great challenge nowadays. Material recycling is a preferred way in Europa owing to legislative actions and ecological arguments. This first step with worn tyres is already done in this direc-tion as GTR is available in different fractions in guaranteed quality. As the traditional applications of GTR are saturated, there is a great demand for new, value-added products containing GTR. So, the objective of this work was to convert GTR by reac-tive blending with polyolefins into thermoplastic elastomers (TPE) of suitable me-chanical and rheological properties. It has been established that bituminous reclamation of GTR prior to extrusion melt compounding with polyolefins is a promising way of TPE production. By this way the sol-content (acetone soluble fraction) of the GTR increases and the GTR particles can be better incorporated in the corresponding polyolefin matrix. The adhesion be-tween GTR and matrix is given by molecular intermingling in the resulting interphase. GTR particles of various production and mean particle size were involved in this study. As polyolefins recycled low-density polyethylene (LDPE), recycled high-density polyethylene (HDPE) and polypropylene (PP) were selected. First, the opti-mum conditions for the GTR reclamation in bitumen were established (160 °C < T < 180 °C; time ca. 4 hours). Polyolefin based TPEs were produced after GTR reclamation in extrusion compounding. Their mechanical (tensile behaviour, set properties), thermal (dynamic-mechanical thermal analysis, differential scanning calorimetry) and rheological properties (both in low- and high-shear rates ) were determined. The PE-based blends contained an ethylene/propylene/diene (EPDM) rubber as compatibilizer and their composition was as follows: PE/EPDM/GTR:bitumen = 50/25/25:25. The selected TPEs met the most important criterion, i.e. elongation at break > 100 %; compression set < 50%. The LDPE-based TPE (TPE(LDPE)) showed better me-chanical performance compared to the TPE(HDPE). This was assigned to the higher crystallinity of the HDPE. The PP-based blends of the compositions PP/(GTR-bitumen) 50/50 and 25/75, whereby the ratio of GTR/bitumen was 60/40, outperformed those containing non-reclaimed GTR. The related blends showed also a better compatibility with a PP-based commercial thermoplastic dynamic vulcanizate (TDV). Surprisingly, the mean particle size of the GTR, varied between < 0.2 and 0.4-0.7 mm, had a small effect on the mechanical properties, however somewhat larger for the rheological behaviour of the TPEs produced.

In the present work, various aspects of the mixed continuum-atomistic modelling of materials are studied, most of which are related to the problems arising due to a development of microstructures during the transition from an elastic to plastic description within the framework of continuum-atomistics. By virtue of the so-called Cauchy-Born hypothesis, which is an essential part of the continuum-atomistics, a localization criterion has been derived in terms of the loss of infinitesimal rank-one convexity of the strain energy density. According to this criterion, a numerical yield condition has been computed for two different interatomic energy functions. Therewith, the range of the Cauchy-Born rule validity has been defined, since the strain energy density remains quasiconvex only within the computed yield surface. To provide a possibility to continue the simulation of material response after the loss of quasiconvexity, a relaxation procedure proposed by Tadmor et al. leading necessarily to the development of microstructures has been used. Thereby, various notions of convexity have been overviewed in details. Alternatively to the above mentioned criterion, a stability criterion has been applied to detect the critical deformation. For the study in the postcritical region, the path-change procedure proposed by Wagner and Wriggers has been adapted for the continuum-atomistic and modified. To capture the deformation inhomogeneity arising due to the relaxation, the Cauchy-Born hypothesis has been extended by assumption that it represents only the 1st term in the Taylor's series expansion of the deformation map. The introduction of the 2nd, quadratic term results in the higher-order materials theory. Based on a simple computational example, the relevance of this theory in the postcritical region has been shown. For all simulations including the finite element examples, the development tool MATLAB 6.5 has been used.

The polydispersive nature of the turbulent droplet swarm in agitated liquid-liquid contacting equipment makes its mathematical modelling and the solution methodologies a rather sophisticated process. This polydispersion could be modelled as a population of droplets randomly distributed with respect to some internal properties at a specific location in space using the population balance equation as a mathematical tool. However, the analytical solution of such a mathematical model is hardly to obtain except for particular idealized cases, and hence numerical solutions are resorted to in general. This is due to the inherent nonlinearities in the convective and diffusive terms as well as the appearance of many integrals in the source term. In this work two conservative discretization methodologies for both internal (droplet state) and external (spatial) coordinates are extended and efficiently implemented to solve the population balance equation (PBE) describing the hydrodynamics of liquid-liquid contacting equipment. The internal coordinate conservative discretization techniques of Kumar and Ramkrishna (1996a, b) originally developed for the solution of PBE in simple batch systems are extended to continuous flow systems and validated against analytical solutions as well as published experimental droplet interaction functions and hydrodynamic data. In addition to these methodologies, we presented a conservative discretization approach for droplet breakage in batch and continuous flow systems, where it is found to have identical convergence characteristics when compared to the method of Kumar and Ramkrishna (1996a). Apart from the specific discretization schemes, the numerical solution of droplet population balance equations by discretization is known to suffer from inherent finite domain errors (FDE). Two approaches that minimize the total FDE during the solution of the discrete PBEs using an approximate optimal moving (for batch) and fixed (for continuous systems) grids are introduced (Attarakih, Bart & Faqir, 2003a). As a result, significant improvements are achieved in predicting the number densities, zero and first moments of the population. For spatially distributed populations (such as extraction columns) the resulting system of partial differential equations is spatially discretized in conservative form using a simplified first order upwind scheme as well as first and second order nonoscillatory central differencing schemes (Kurganov & Tadmor, 2000). This spatial discretization avoids the characteristic decomposition of the convective flux based on the approximate Riemann Solvers and the operator splitting technique required by classical upwind schemes (Karlsen et al., 2001). The time variable is discretized using an implicit strongly stable approach that is formulated by careful lagging of the nonlinear parts of the convective and source terms. The present algorithms are tested against analytical solutions of the simplified PBE through many case studies. In all these case studies the discrete models converges successfully to the available analytical solutions and to solutions on relatively fine grids when the analytical solution is not available. This is accomplished by deriving five analytical solutions of the PBE in continuous stirred tank and liquid-liquid extraction column for especial cases of breakage and coalescence functions. As an especial case, these algorithms are implemented via a windows computer code called LLECMOD (Liquid-Liquid Extraction Column Module) to simulate the hydrodynamics of general liquid-liquid extraction columns (LLEC). The user input dialog makes the LLECMOD a user-friendly program that enables the user to select grids, column dimensions, flow rates, velocity models, simulation parameters, dispersed and continuous phases chemical components, and droplet phase space-time solvers. The graphical output within the windows environment adds to the program a distinctive feature and makes it very easy to examine and interpret the results very quickly. Moreover, the dynamic model of the dispersed phase is carefully treated to correctly predict the oscillatory behavior of the LLEC hold up. In this context, a continuous velocity model corresponding to the manipulation of the inlet continuous flow rate through the control of the dispersed phase level is derived to get rid of this behavior.

A general framework for the thermodynamics of open systems is developed in the spatial and the material setting. Special emphasis is placed on the balance of mass which is enhanced by additional source and flux terms. Different solution strategies within the finite element technique are derived and compared. A number of numerical examples illustrates the features of the proposed approach.

In this thesis, the enhanced Galerkin (eG) finite element method in time is presented. The eG method leads to higher order accurate energy and momentum conserving time integrators for the underlying finite-dimensional Hamiltonian systems. This thesis is concerned with particle dynamics and semi-discrete nonlinear elastodynamics. The conservation is generally related to the collocation property of the eG method. The momentum conservation renders the Gaussian quadrature and the energy conservation is obtained by using a new projection technique. An objective time discretisation of the used strain measures avoids artificial strains for large superimposed rigid body motions. The numerical examples show the well long term performance in the presence of stiffness as well as for calculating large-strain motions.