### Refine

#### Year of publication

- 1998 (90) (remove)

#### Document Type

- Preprint (90) (remove)

#### Language

- English (90) (remove)

#### Keywords

- Case Based Reasoning (4)
- CIM-OSA (2)
- Kalman filtering (2)
- TOVE (2)
- coset enumeration (2)
- particle methods (2)
- subgroup problem (2)
- Boltzmann Equation (1)
- Complexity (1)
- Correspondence with other notations (1)
- Dependency Factors (1)
- Dirichlet series (1)
- Distributed Software Development (1)
- EXPRESS-G (1)
- Electron states in low-dimensional structures (1)
- Enterprise modeling (1)
- Enterprise modelling (1)
- Grid Graphs (1)
- Gröbner base (1)
- Gröbner bases (1)
- Gröbner bases in monoid and group rings (1)
- HOT (1)
- Hilbert transform (1)
- Ill-Posed Problems (1)
- Internet Based Software Process Management Environment (1)
- Kallianpur-Robbins law (1)
- Learning systems (1)
- Linear Integral Equations (1)
- Monoid and group rings (1)
- Monotone dynamical systems (1)
- Nonlinear dynamics (1)
- Numerical Simulation (1)
- Ontolingua (1)
- Ontology (1)
- PERA (1)
- Quantum mechanics (1)
- Rarefied Gas Flows (1)
- Rayleigh Number (1)
- Recurrent neural networks (1)
- Riemann-Siegel formula (1)
- Robust reliability (1)
- Simultaneous quantifier elimination (1)
- Tunneling (1)
- UML (1)
- WETICE 98 (1)
- adaptive grid generation (1)
- area loss (1)
- automated proof planner (1)
- center and median problems (1)
- confluence (1)
- convex models (1)
- crack diagnosis (1)
- cusp forms (1)
- da (1)
- damage diagnosis (1)
- domain decomposition (1)
- exact fully discrete vectorial wavelet transform (1)
- fixpoint theorem (1)
- fluid dynamic equations (1)
- higher order (1)
- higher order tableau (1)
- kinetic equations (1)
- kinetic models (1)
- level set method (1)
- locational analysis (1)
- log averaging methods (1)
- monoid- and group-presentations (1)
- multi-hypothesis diagnosis (1)
- natural language semantics (1)
- non-linear dynamics (1)
- occupation measure (1)
- planar Brownian motion (1)
- prefix reduction (1)
- prefix string rewriting (1)
- prefix-rewriting (1)
- proof presentation (1)
- pyramid scheme (1)
- rarefied gas flows (1)
- ratio ergodic theorem (1)
- reinitialization (1)
- rotating machinery (1)
- scale discrete spherical vector wavelets (1)
- sequent calculus (1)
- skolemization (1)
- stationary solutions (1)
- steady Boltzmann equation (1)
- strong theorems (1)
- subgroup presentation problem (1)
- theorem prover (1)
- variable cardinality case (1)
- vectorial multiresolution analysis (1)
- vehicular traffic (1)

#### Faculty / Organisational entity

As the previous chapters of this book have shown, case-based reasoning is a technology that has been successfully applied to a large range of different tasks. Through all the different CBR projects, both basic research projects as well as industrial development projects, lots of knowledge and experience about how to build a CBR application has been collected. Today, there is already an increasing number of successful companies developing industrial CBR applications. In former days, these companies could develop their early pioneering CBR applications in an ad-hoc manner. The highly-skilled CBR expert of the company was able to manage these projects and to provide the developers with the required expertise.

This paper presents a brief overview of the INRECA-II methodology for building and maintaining CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development and maintenance experience is documented using software process models and stored in a three-layered experience packet.

Although several systematic analyses of existing approaches to adaptation have been published recently, a general formal adaptation framework is still missing. This paper presents a step into the direction of developing such a formal model of transformational adaptation. The model is based on the notion of the quality of a solution to a problem, while quality is meant in a more general sense and can also denote some kind of appropriateness, utility, or degree of correctness. Adaptation knowledge is then defined in terms of functions transforming one case into a successor case. The notion of quality provides us with a semantics for adaptation knowledge and allows us to define terms like soundness, correctness and completeness. In this view, adaptation (and even the whole CBR process) appears to be a special instance of an optimization problem.

For defining attribute types to be used in the case representation, taxonomies occur quite often. The symbolic values at any node of the taxonomy tree are used as attribute values in a case or a query. A taxonomy type represents a relationship between the symbols through their position within the taxonomy-tree which expresses knowledge about the similarity between the symbols. This paper analyzes several situations in which taxonomies are used in different ways and proposes a systematic way of specifying local similarity measures for taxonomy types. The proposed similarity measures have a clear semantics and are easy to compute at runtime.

This paper motivates the necessity for support for negotiation during Sales Support on the Internet within Case-Based Reasoning solutions. Different negotiation approaches are discussed and a general model of the sales process is presented. Further, the tradition al CBR-cycle is modified in such a way that iterative retrieval during a CBR consulting session is covered by the new model. Several gen eral characteristics of negotiation are described and a case study is shown where preliminary approaches are used to negotiate with a cu stomer about his demands and available products in a 'CBR-based' Electronic Commerce solution.

Object-oriented case representations require approaches for similarity assessment that allow to compare two differently structured objects, in particular, objects belonging to different object classes. Currently, such similarity measures are developed more or less in an ad-hoc fashion. It is mostly unclear, how the structure of an object-oriented case model, e.g., the class hierarchy, influences similarity assessment. Intuitively, it is obvious that the class hierarchy contains knowledge about the similarity of the objects. However, how this knowledge relates to the knowledge that could be represented in similarity measures is not obvious at all. This paper analyzes several situations in which class hierarchies are used in different ways for case modeling and proposes a systematic way of specifying similarity measures for comparing arbitrary objects from the hierarchy. The proposed similarity measures have a clear semantics and are computationally inexpensive to compute at run-time.

Contrary to symbolic learning approaches, that represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case-based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and casebased methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

Programs are linguistic structures which contain identifications of individuals: memory locations, data types, classes, objects, relations, functions etc. must be identified selectively or definingly. The first part of the essay which deals with identification by showing and designating is rather short, whereas the remaining part dealing with paraphrasing is rather long. The reason is that for an identification by showing or designating no linguistic compositions are needed, in contrast to the case of identification by paraphrasing. The different types of functional paraphrasing are covered here in great detail because the concept of functional paraphrasing is the foundation of functional programming. The author had to decide whether to cover this subject here or in his essay Purpose versus Form of Programs where the concept of functional programming is presented. Finally, the author came to the conclusion that this essay on identification is the more appropriate place.

In system theory, state is a key concept. Here, the word state refers to condition, as in the example Since he went into the hospital, his state of health worsened daily. This colloquial meaning was the starting point for defining the concept of state in system theory. System theory describes the relationship between input X and output Y, that is, between influence and reaction. In system theory, a system is something that shows an observable behavior that may be influenced. Therefore, apart from the system, there must be something else influencing and observing the reaction of the system. This is called the environment of the system.

The paper presents a process-oriented view on knowledge management in software development. We describe requirements on knowledge management systems from a process-oriented perspective, introduce a process modeling language MILOS and its use for knowledge management. Then we explain how a process-oriented knowledge management system can be implemented using advanced but available information technologies.

The term enterprise modelling, synonymous with enterprise engineering, refers to methodologies developed for modelling activities, states, time, and cost within an enterprise architecture. They serve as a vehicle for evaluating and modelling activities resources etc. CIM - OSA (Computer Integrated Manufacturing Open Systems Architecture) is a methodology for modelling computer integrated environments, and its major objective is the appropriate integration of enterprise operations by means of efficient information exchange within the enterprise. PERA is another methodology for developing models of computer integrated manufacturing environments. The department of industrial engineering in Toronto proposed the development of ontologies as a vehicle for enterprise integration. The paper reviews the work carried out by various researchers and computing departments on the area of enterprise modelling and points out other modelling problems related to enterprise integration.

The term enterprise modeling, synonymous with enterprise engineering, often refers to methodologies, developed for modeling activities, states, time, and cost within an enterprise architecture. They serve as a vehicle for evaluating and modeling activities resources and so on. CIM - OSA (Computer Integrated Manufacturing Open Systems Architecture) is a methodology for modeling computer integrated environments, and its major objective is the appropriate integration of enterprise operations by means of efficient information exchange within the enterprise. Although there are other methodo- logies in the industry that serve the same purpose, most of them concentrate on the internal aspect of an enterprise. The paper is concerned with the modeling of the links between enterprises. The aim is to examine these relationships or links in detail and suggest a method for modeling enterprise networks drawing on the methodologies currently used in the industry and extending with the method proposed here.

The paper addresses two problems of comprehensible proof presentation, the hierarchically structured presentation at the level of proof methods and different presentation styles of construction proofs. It provides solutions for these problems that can make use of proof plans generated by an automated proof planner.

On the one hand, in the world of Product Data Technology (PDT), the ISO standard STEP (STandard for the Exchange of Product model data) gains more and more importance. STEP includes the information model specification language EXPRESS and its graphical notation EXPRESS-G. On the other hand, in the Software Engineering world in general, mainly other modelling languages are in use - particularly the Unified Modeling Language (UML), recently adopted to become a standard by the Object Management Group, will probably achieve broad acceptance. Despite a strong interconnection of PDT with the Software Engineering area, there is a lack of bridging elements concerning the modelling language level. This paper introduces a mapping between EXPRESS-G and UML in order to define a linking bridge and bring the best of both worlds together. Hereby the feasibility of a mapping is shown with representative examples; several problematic cases are discussed as well as possible solutions presented.

Interoperability between different CAx systems involved in the development process of cars is presently one of the most critical issues in the automotive industry. None of the existing CAx systems meets all requirements of the very complex process network of the lifecycle of a car. With this background, industrial engineers have to use various CAx systems to get an optimal support for their daily work. Today, the communication between different CAx systems is done via data files using special direct converters or neutral system independent standards like IGES, VDAFS, and recently STEP, the international standard for product data description. To reduce the dependency on individual CAx s ystem vendors, the German automotive industry developed an open CAx system architecture based on STEP as guiding principle for CAx system development. The central component of this architecture is a common, system-independent access interface to CAx functions and data of all involved CAx systems, which is under development in the project ANICA. Within this project, a CAx object bus has been developed based on a STEP data description using CORBA as an integration platform. This new approach allows a transparent access to data and functions of the integrated CAx systems without file-based data exchange. The product development process with various CAx systems concerns objects from different CAx systems. Thus, mechanisms are needed to handle the persistent storage of the CAx objects distributed over the CAx object bus to give the developing engineers a consistent view of the data model of their product. The following paper discusses several possibilities to guarantee consistent data management and storage of distributed CAx models. One of the most promising approaches is the enhancement of the CAx object bus by a STEP-based object-oriented data server to realise a central data management.

The Kallianpur-Robbins law describes the long term asymptotic behaviour of the distribution of the occupation measure of a Brownian motion in the plane. In this paper we show that this behaviour can be seen at every typical Brownian path by choosing either a random time or a random scale according to the logarithmic laws of order three. We also prove a ratio ergodic theorem for small scales outside an exceptional set of vanishing logarithmic density of order three.

In the following an introduction to the level set method will be givenso that one becomes aware of the arising problems, which lead to the needof reinitialization. The problems concerning reinitialization itself will be analysed more detailed and a solution for area loss will be proposed. This solution consists in a combination of the commonly used PDE for reinitialization and extrapolation around the zero level set. Numericalexperiments show rather satisfactory results as far as area loss and computation of curvature are concerned.

The paper discusses the metastable states of a quantum particle in a periodic potential under a constant force (the model of a crystal electron in a homogeneous electric ,eld), which are known as the Wannier-Stark ladder of resonances. An ecient procedure to ,nd the positions and widths of resonances is suggested and illustrated by numerical calculation for a cosine potential.

We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.

The tunneling splitting of the energy levels of a ferromagnetic particle in the presence of an applied magnetic field - previously derived only for the ground state with the path integral method - is obtained in a simple way from Schr"odinger theory. The origin of the factors entering the result is clearly understood, in particular the effect of the asymmetry of the barriers of the potential. The method should appeal particularly to experimentalists searching for evidence of macroscopic spin tunneling.

Transitions from classical to quantum behaviour in a spin system with two degenerate ground states separated by twin energy barriers which are asymmetric due to an applied magnetic field are investigated. It is shown that these transitions can be interpreted as first- or second-order phase transitions depending on the anisotropy and magnetic parameters defining the system in an effective Lagrangian description.

The greybody factors in BTZ black holes are evaluated from 2D CFT in the spirit of AdS3/CFT correspondence. The initial state of black holes in the usual calculation of greybody factors by effective CFT is described as Poincar'e vacuum state in 2D CFT. The normalization factor which cannot be fixed in the effective CFT without appealing to string theory is shown to be determined by the normalized bulk-to-boundary Green function. The relation among the greybody factors in different dimensional black holes is exhibited. Two kinds of (h; _h) = (1; 1) operators which couple with the boundary value of massless scalar field are discussed.

The light-cone Hamiltonian approach is applied to the super D2- brane, and the equivalent area-preserving and U(1) gauge-invariant effective Lagrangian, which is quadratic in the U(1) gauge field, is derived. The latter is recognised to be that of the three- dimensional U(1) gauge theory, interacting with matter supermultiplets, in a special external induced supergravity metric and the gravitino field, depending on matter fields. The duality between this theory and 11d supermembrane theory is demonstrated in the light-cone gauge.

The pure-Skyrme limit of a scale-breaking Skyrmed O(3) sigma model in 1+1 dimensions is employed to study the effect of the Skyrme term on the semiclassical analysis of a field theory with instantons. The instantons of this model are self-dual and can be evaluated explicitly. They are also localised to an absolute scale, and their fluctuation action can be reduced to a scalar subsystem. This permits the explicit calculation of the fluctuation determinant and the shift in vacuum energy due to instantons. The model also illustrates the semiclassical quantisation of a Skyrmed field theory.

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.

The lowest resonant frequency of a cavity resonator is usually approximated by the classical Helmholtz formula. However, if the opening is rather large and the front wall is narrow this formula is no longer valid. Here we present a correction which is of third order in the ratio of the diameters of aperture and cavity. In addition to the high accuracy it allows to estimate the damping due to radiation. The result is found by applying the method of matched asymptotic expansions. The correction contains form factors describing the shapes of opening and cavity. They are com- puted for a number of standard geometries. Results are compared with numerical computations.

In this paper, a combined approach to damage diagnosis of rotors is proposed. The intention is to employ signal-based as well as model-based procedures for an improved detection of size and location of the damage. In a first step, Hilbert transform signal processing techniques allow for a computation of the signal envelope and the instantaneous frequency, so that various types of non-linearities due to a damage may be identified and classified based on measured response data. In a second step, a multi-hypothesis bank of Kalman Filters is employed for the detection of the size and location of the damage based on the information of the type of damage provided by the results of the Hilbert transform.

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

For the determination of the earth" s gravity field many types of observations are available nowadays, e.g., terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradiometry etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other hand, is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e., linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth" s surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth" s models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry, and combined satellite-to-satellite tracking and gradiometry.

Rewriting techniques have been applied successfully to various areas of symbolic computation. Here we consider the notion of prefix-rewriting and give a survey on its applications to the subgroup problem in combinatorial group theory. We will see that for certain classes of finitely presented groups finitely generated subgroups can be described through convergent prefix-rewriting systems, which can be obtained from a presentation of the group considered and a set of generators for the subgroup through a specialized Knuth-Bendix style completion procedure. In many instances a finite presentation for the subgroup considered can be constructed from such a convergent prefix-rewriting system, thus solving the subgroup presentation problem. Finally we will see that the classical procedures for computing Nielsen reduced sets of generators for a finitely generated subgroup of a free group and the Todd-Coxeter coset enumeration can be interpreted as particular instances of prefix-completion. Further, both procedures are closely related to the computation of prefix Gr"obner bases for right ideals in free group rings.

Todd and Coxeter's method for enumerating cosets of finitely generated subgroups in finitely presented groups (abbreviated by Tc here) is one famous method from combinatorial group theory for studying the subgroup problem. Since prefix string rewriting is also an appropriate method to study this problem, prefix string rewriting methods have been compared to Tc. We recall and compare two of them briefly, one by Kuhn and Madlener [4] and one by Sims [15]. A new approach using prefix string rewriting in free groups is derived from the algebraic method presented by Reinert, Mora and Madlener in [14] which directly emulates Tc. It is extended to free monoids and an algebraic characterization for the "cosets" enumerated in this setting is provided.

On a family F of probability measures on a measure space we consider the Hellinger and Kullback-Leibler distances. We show that under suitable regulari ty conditions Jeffreys' prior is proportional to the k-dimensional Hausdorff measure w.r.t. Hellinger dis tance respectively to the k2 -dimensional Hausdorff measure w.r.t. Kullback-Leibler distance. The proof i s based on an area-formula for the Hausdorff measure w.r.t. to generalized distances.

The paper studies differential and related properties of functions of a real variable with values in the space of signed measures. In particular the connections between different definitions of differentiability are described corresponding to different topologies on the measures. Some conditions are given for the equivalence of the measures in the range of such a function. These conditions are in terms of socalled logarithmic derivatives and yield a generalization of the Cameron-Martin-Maruyama-Girsanov formula. Questions of this kind appear both in the theory of differentiable measures on infinite-dimensional spaces and in the theory of statistical experiments.

Robust Reliability of Diagnostic Multi-Hypothesis Algorithms: Application to Rotating Machinery
(1998)

Damage diagnosis based on a bank of Kalman filters, each one conditioned on a specific hypothesized system condition, is a well recognized and powerful diagnostic tool. This multi-hypothesis approach can be applied to a wide range of damage conditions. In this paper, we will focus on the diagnosis of cracks in rotating machinery. The question we address is: how to optimize the multi-hypothesis algorithm with respect to the uncertainty of the spatial form and location of cracks and their resulting dynamic effects. First, we formulate a measure of the reliability of the diagnostic algorithm, and then we discuss modifications of the diagnostic algorithm for the maximization of the reliability. The reliability of a diagnostic algorithm is measured by the amount of uncertainty consistent with no-failure of the diagnosis. Uncertainty is quantitatively represented with convex models.

For the numerical simulation of 3D radiative heat transfer in glasses and glass melts, practically applicable mathematical methods are needed to handle such problems optimal using workstation class computers. Since the exact solution would require super-computer capabilities we concentrate on approximate solutions with a high degree of accuracy. The following approaches are studied: 3D diffusion approximations and 3D ray-tracing methods.

In the present paper multilane models for vehicular traffic are considered. A microscopic multilane model based on reaction thresholds is developed. Based on this model an Enskog like kinetic model is developed. In particular, care is taken to incorporate the correlations between the vehicles. From the kinetic model a fluid dynamic model is derived. The macroscopic coefficients are deduced from the underlying kinetic model. Numerical simulations are presented for all three levels of description in [10]. Moreover, a comparison of the results is given there.

In this paper the work presented in [6] is continued. The present paper contains detailed numerical investigations of the models developed there. A numerical method to treat the kinetic equations obtained in [6] are presented and results of the simulations are shown. Moreover, the stochastic correlation model used in [6] is described and investigated in more detail.

In this paper domain decomposition methods for radiative transfer problems including conductive heat transfer are treated. The paper focuses on semi-transparent materials, like glass, and the associated conditions at the interface between the materials. Using asymptotic analysis we derive conditions for the coupling of the radiative transfer equations and a diffusion approximation. Several test cases are treated and a problem appearing in glass manufacturing processes is computed. The results clearly show the advantages of a domain decomposition approach. Accuracy equivalent to the solution of the global radiative transfer solution is achieved, whereas computation time is strongly reduced.

A new approach is proposed to model and simulate numerically heterogeneous catalysis in rarefied gas flows. It is developed to satisfy all together the following points: i) describe the gas phase at the microscopic scale, as required in rarefied flows, ii) describe the wall at the macroscopic scale, to avoid prohibitive computational costs and consider not only crystalline but also amorphous surfaces, iii) reproduce on average macroscopic laws correlated with experimental results and iv) derive ana- lytic models in a systematic and exact way. The problem is stated in the general framework of a non static flow in the vicinity of a catalytic and non porous surface (without ageing). It is shown that the exact and systematic resolution method based on the Laplace transform, introduced previously by the author to model collisions in the gas phase, can be extended to the present problem. The proposed approach is applied to the modelling of the Eley-Rideal and Langmuir-Hinshelwood recombinations, assuming that the coverage is locally at equilibrium. The models are developed considering one atomic species and extended to the gen eral case of several atomic species. Numerical calculations show that the models derived in this way reproduce with accuracy behaviours observed experimentally.

A new method of determining some characteristics of binary images is proposed based on a special linear filtering. This technique enables the estimation of the area fraction, the specific line length, and the specific integral of curvature. Furthermore, the specific length of the total projection is obtained, which gives detailed information about the texture of the image. The influence of lateral and directional resolution depending on the size of the applied filter mask is discussed in detail. The technique includes a method of increasing directional resolution for texture analysis while keeping lateral resolution as high as possible.

A multi-phase composite with periodic distributed inclusions with a smooth boundary is considered in this contribution. The composite component materials are supposed to be linear viscoelastic and aging (of the non-convolution integral type, for which the Laplace transform with respect to time is not effectively applicable) and are subjected to isotropic shrinkage. The free shrinkage deformation can be considered as a fictitious temperature deformation in the behavior law. The procedure presented in this paper proposes a way to determine average (effective homogenized) viscoelastic and shrinkage (temperature) composite properties and the homogenized stress-field from known properties of the components. This is done by the extension of the asymptotic homogenization technique known for pure elastic non-homogeneous bodies to the non-homogeneous thermo-viscoelasticity of the integral non-convolution type. Up to now, the homogenization theory has not covered viscoelasticity of the integral type. Sanchez-Palencia (1980), Francfort & Suquet (1987) (see [2], [9]) have consid- ered homogenization for viscoelasticity of the differential form and only up to the first derivative order. The integral-modeled viscoelasticity is more general then the differential one and includes almost all known differential models. The homogenization procedure is based on the construction of an asymptotic solution with respect to a period of the composite structure. This reduces the original problem to some auxiliary boundary value problems of elasticity and viscoelasticity on the unit periodic cell, of the same type as the original non-homogeneous problem. The existence and uniqueness results for such problems were obtained for kernels satisfying some constrain conditions. This is done by the extension of the Volterra integral operator theory to the Volterra operators with respect to the time, whose 1 kernels are space linear operators for any fixed time variables. Some ideas of such approach were proposed in [11] and [12], where the Volterra operators with kernels depending additionally on parameter were considered. This manuscript delivers results of the same nature for the case of the space-operator kernels.

We propose a new discretization scheme for solving ill-posed integral equations of the third kind. Combining this scheme with Morozov's discrepancy principle for Landweber iteration we show that for some classes of equations in such method a number of arithmetic operations of smaller order than in collocation method is required to appoximately solve an equation with the same accuracy.

In this paper we study the space-time asymptotic behavior of the solutions and derivatives to th incompressible Navier-Stokes equations. Using moment estimates we obtain that strong solutions to the Navier-Stokes equations which decay in \(L^2\) at the rate of \(||u(t)||_2 \leq C(t+1)^{-\mu}\) will have the following pointwise space-time decay \[|D^{\alpha}u(x,t)| \leq C_{k,m} \frac{1}{(t+1)^{ \rho_o}(1+|x|^2)^{k/2}} \]
where \( \rho_o = (1-2k/n)( m/2 + \mu) + 3/4(1-2k/n)\), and \(|a |= m\). The dimension n is \(2 \leq n \leq 5\) and \(0\leq k\leq n\) and \(\mu \geq n/4\)