### Refine

#### Year of publication

- 1999 (525) (remove)

#### Document Type

- Preprint (397)
- Article (73)
- Doctoral Thesis (28)
- Course Material (6)
- Master's Thesis (6)
- Report (5)
- Lecture (3)
- Study Thesis (3)
- Working Paper (2)
- Diploma Thesis (1)
- Periodical Part (1)

#### Is part of the Bibliography

- no (525)

#### Keywords

- Case-Based Reasoning (11)
- AG-RESY (6)
- Praktikum (6)
- Fallbasiertes Schliessen (5)
- HANDFLEX (5)
- Location Theory (5)
- PARO (5)
- case-based problem solving (5)
- Abstraction (4)
- Fallbasiertes Schließen (4)

#### Faculty / Organisational entity

- Fachbereich Informatik (267)
- Fachbereich Mathematik (131)
- Fachbereich Physik (76)
- Fachbereich Chemie (19)
- Fachbereich Elektrotechnik und Informationstechnik (10)
- Fachbereich ARUBI (6)
- Fraunhofer (ITWM) (6)
- Fachbereich Wirtschaftswissenschaften (5)
- Fachbereich Biologie (2)
- Fachbereich Maschinenbau und Verfahrenstechnik (2)

The team work method is a concept for distributing automated theoremprovers and so to activate several experts to work on a given problem. We haveimplemented this for pure equational logic using the unfailing KnuthADBendixcompletion procedure as basic prover. In this paper we present three classes ofexperts working in a goal oriented fashion. In general, goal oriented experts perADform their job "unfair" and so are often unable to solve a given problem alone.However, as a team member in the team work method they perform highly effiADcient, even in comparison with such respected provers as Otter 3.0 or REVEAL,as we demonstrate by examples, some of which can only be proved using teamwork.The reason for these achievements results from the fact that the team workmethod forces the experts to compete for a while and then to cooperate by exADchanging their best results. This allows one to collect "good" intermediate resultsand to forget "useless" ones. Completion based proof methods are frequently reADgarded to have the disadvantage of being not goal oriented. We believe that ourapproach overcomes this disadvantage to a large extend.

In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

In 1978, Klop demonstrated that a rewrite system constructed by adding the untyped lambda calculus, which has the Church-Rosser property, to a Church-Rosser first-order algebraic rewrite system may not be Church-Rosser. In contrast, Breazu-Tannen recently showed that argumenting any Church-Rosser first-order algebraic rewrite system with the simply-typed lambda calculus results in a Church-Rosser rewrite system. In addition, Breazu-Tannen and Gallier have shown that the second-order polymorphic lambda calculus can be added to such rewrite systems without compromising the Church-Rosser property (for terms which can be provably typed). There are other systems for which a Church-Rosser result would be desirable, among them being X^t+SP+FIX, the simply-typed lambda calculus extended with surjective pairing and fixed points. This paper will show that Klop's untyped counterexample can be lifted to a typed system to demonstrate that X^t+SP+FIX is not Church-Rosser.

Over the past thirty years there have been significant achievements in the field of auto-mated theorem proving with respect to the reasoning power of the inference engines.Although some effort has also been spent to facilitate more user friendliness of the de-duction systems, most of them failed to benefit from more recent developments in therelated fields of artificial intelligence (AI), such as natural language generation and usermodeling. In particular, no model is available which accounts both for human deductiveactivities and for human proof presentation. In this thesis, a reconstructive architecture issuggested which substantially abstracts, reorganizes and finally translates machine-foundproofs into natural language. Both the procedures and the intermediate representationsof our architecture find their basis in computational models for informal mathematicalreasoning and for proof presentation. User modeling is not incorporated into the currenttheory, although we plan to do so later.

In this article we formally describe a declarative approach for encoding plan operatorsin proof planning, the so-called methods. The notion of method evolves from the much studiedconcept tactic and was first used by Bundy. While significant deductive power has been achievedwith the planning approach towards automated deduction, the procedural character of the tacticpart of methods, however, hinders mechanical modification. Although the strength of a proofplanning system largely depends on powerful general procedures which solve a large class ofproblems, mechanical or even automated modification of methods is nevertheless necessary forat least two reasons. Firstly methods designed for a specific type of problem will never begeneral enough. For instance, it is very difficult to encode a general method which solves allproblems a human mathematician might intuitively consider as a case of homomorphy. Secondlythe cognitive ability of adapting existing methods to suit novel situations is a fundamentalpart of human mathematical competence. We believe it is extremely valuable to accountcomputationally for this kind of reasoning.The main part of this article is devoted to a declarative language for encoding methods,composed of a tactic and a specification. The major feature of our approach is that the tacticpart of a method is split into a declarative and a procedural part in order to enable a tractableadaption of methods. The applicability of a method in a planning situation is formulatedin the specification, essentially consisting of an object level formula schema and a meta-levelformula of a declarative constraint language. After setting up our general framework, wemainly concentrate on this constraint language. Furthermore we illustrate how our methodscan be used in a Strips-like planning framework. Finally we briefly illustrate the mechanicalmodification of declaratively encoded methods by so-called meta-methods.

This paper presents a new way to use planning in automated theorem provingby means of distribution. To overcome the problem that often subtasks fora proof problem can not be detected a priori (which prevents the use of theknown planning and distribution techniques) we use a team of experts that workindependently with different heuristics on the problem. After a certain amount oftime referees judge their results using the impact of the results on the behaviourof the expert and a supervisor combines the selected results to a new startingpoint.This supervisor also selects the experts that can work on the problem inthe next round. This selection is a reactive planning task. We outline whichinformation the supervisor can use to fulfill this task and how this informationis processed to result in a plan or to revise a plan. We also show that the useof planning for the assignment of experts to the team allows the system to solvemany different examples in an acceptable time with the same start configurationand without any consultation of the user.Plans are always subject to changeShin'a'in proverb

We provide an overview of UNICOM, an inductive theorem prover for equational logic which isbased on refined rewriting and completion techniques. The architecture of the system as well as itsfunctionality are described. Moreover, an insight into the most important aspects of the internalproof process is provided. This knowledge about how the central inductive proof componentof the system essentially works is crucial for human users who want to solve non-trivial prooftasks with UNICOM and thoroughly analyse potential failures. The presentation is focussedon practical aspects of understanding and using UNICOM. A brief but complete description ofthe command interface, an installation guide, an example session, a detailed extended exampleillustrating various special features and a collection of successfully handled examples are alsoincluded.

While most approaches to similarity assessment are oblivious of knowledge and goals, there is ample evidence that these elements of problem solving play an important role in similarity judgements. This paper is concerned with an approach for integrating assessment of similarity into a framework of problem solving that embodies central notions of problem solving like goals, knowledge and learning.

To prove difficult theorems in a mathematical field requires substantial know-ledge of that field. In this thesis a frame-based knowledge representation formal-ism including higher-order sorted logic is presented, which supports a conceptualrepresentation and to a large extent guarantees the consistency of the built-upknowledge bases. In order to operationalize this knowledge, for instance, in anautomated theorem proving system, a class of sound morphisms from higher-orderinto first-order logic is given, in addition a sound and complete translation ispresented. The translations are bijective and hence compatible with a later proofpresentation.In order to prove certain theorems the comprehension axioms are necessary,(but difficult to handle in an automated system); such theorems are called trulyhigher-order. Many apparently higher-order theorems (i.e. theorems that arestated in higher-order syntax) however are essentially first-order in the sense thatthey can be proved without the comprehension axioms: for proving these theoremsthe translation technique as presented in this thesis is well-suited.

We transform a user-friendly formulation of aproblem to a machine-friendly one exploiting the variabilityof first-order logic to express facts. The usefulness of tacticsto improve the presentation is shown with several examples.In particular it is shown how tactical and resolution theoremproving can be combined.

There are well known examples of monoids in literature which do not admit a finite andcanonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi-trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditionalterm rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems wegive finite and canonical presentations of the examples mentioned above. Furthermore weshow, that each finitely generated monoid with decidable word problem is embeddable in amonoid which has a finite canonical conditional presentation.

Typical examples, that is, examples that are representative for a particular situationor concept, play an important role in human knowledge representation and reasoning.In real life situations more often than not, instead of a lengthy abstract characteriza-tion, a typical example is used to describe the situation. This well-known observationhas been the motivation for various investigations in experimental psychology, whichalso motivate our formal characterization of typical examples, based on a partial orderfor their typicality. Reasoning by typical examples is then developed as a special caseof analogical reasoning using the semantic information contained in the correspondingconcept structures. We derive new inference rules by replacing the explicit informa-tion about connections and similarity, which are normally used to formalize analogicalinference rules, by information about the relationship to typical examples. Using theseinference rules analogical reasoning proceeds by checking a related typical example,this is a form of reasoning based on semantic information from cases.

This paper concerns a knowledge structure called method , within a compu-tational model for human oriented deduction. With human oriented theoremproving cast as an interleaving process of planning and verification, the body ofall methods reflects the reasoning repertoire of a reasoning system. While weadopt the general structure of methods introduced by Alan Bundy, we make anessential advancement in that we strictly separate the declarative knowledgefrom the procedural knowledge. This is achieved by postulating some stand-ard types of knowledge we have identified, such as inference rules, assertions,and proof schemata, together with corresponding knowledge interpreters. Ourapproach in effect changes the way deductive knowledge is encoded: A newcompound declarative knowledge structure, the proof schema, takes the placeof complicated procedures for modeling specific proof strategies. This change ofparadigm not only leads to representations easier to understand, it also enablesus modeling the even more important activity of formulating meta-methods,that is, operators that adapt existing methods to suit novel situations. In thispaper, we first introduce briefly the general framework for describing methods.Then we turn to several types of knowledge with their interpreters. Finally,we briefly illustrate some meta-methods.

We present a framework for the integration of the Knuth-Bendix completion algorithm with narrowing methods, compiled rewrite rules, and a heuristic difference reduction mechanism for paramodulation. The possibility of embedding theory unification algorithms into this framework is outlined. Results are presented and discussed for several examples of equality reasoning problems in the context of an actual implementation of an automated theorem proving system (the Mkrp-system) and a fast C implementation of the completion procedure. The Mkrp-system is based on the clause graph resolution procedure. The thesis shows the indispensibility of the constraining effects of completion and rewriting for equality reasoning in general and quantifies the amount of speed-up caused by various enhancements of the basic method. The simplicity of the superposition inference rule allows to construct an abstract machine for completion, which is presented together with computation times for a concrete implementation.

This report presents the main ideas underlyingtheOmegaGamma mkrp-system, an environmentfor the development of mathematical proofs. The motivation for the development ofthis system comes from our extensive experience with traditional first-order theoremprovers and aims to overcome some of their shortcomings. After comparing the benefitsand drawbacks of existing systems, we propose a system architecture that combinesthe positive features of different types of theorem-proving systems, most notably theadvantages of human-oriented systems based on methods (our version of tactics) andthe deductive strength of traditional automated theorem provers.In OmegaGamma mkrp a user first states a problem to be solved in a typed and sorted higher-order language (called POST ) and then applies natural deduction inference rules inorder to prove it. He can also insert a mathematical fact from an integrated data-base into the current partial proof, he can apply a domain-specific problem-solvingmethod, or he can call an integrated automated theorem prover to solve a subprob-lem. The user can also pass the control to a planning component that supports andpartially automates his long-range planning of a proof. Toward the important goal ofuser-friendliness, machine-generated proofs are transformed in several steps into muchshorter, better-structured proofs that are finally translated into natural language.This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2, D3)

An important property and also a crucial point ofa term rewriting system is its termination. Transformation or-derings, developed by Bellegarde & Lescanne strongly based on awork of Bachmair & Dershowitz, represent a general technique forextending orderings. The main characteristics of this method aretwo rewriting relations, one for transforming terms and the otherfor ensuring the well-foundedness of the ordering. The centralproblem of this approach concerns the choice of the two relationssuch that the termination of a given term rewriting system can beproved. In this communication, we present a heuristic-based al-gorithm that partially solves this problem. Furthermore, we showhow to simulate well-known orderings on strings by transformationorderings.

The reasoning power of human-oriented plan-based reasoning systems is primarilyderived from their domain-specific problem solving knowledge. Such knowledge is, how-ever, intrinsically incomplete. In order to model the human ability of adapting existingmethods to new situations we present in this work a declarative approach for represent-ing methods, which can be adapted by so-called meta-methods. Since apparently thesuccess of this approach relies on the existence of general and strong meta-methods,we describe several meta-methods of general interest in detail by presenting the prob-lem solving process of two familiar classes of mathematical problems. These examplesshould illustrate our philosophy of proof planning as well: besides planning with thecurrent repertoire of methods, the repertoire of methods evolves with experience inthat new ones are created by meta-methods which modify existing ones.

We present a new criterion for confluence of (possibly) non-terminating left-linear term rewriting systems. The criterion is based on certain strong joinabil-ity properties of parallel critical pairs . We show how this criterion relates toother well-known results, consider some special cases and discuss some possibleextensions.

In this paper we are interested in an algebraic specification language that (1) allowsfor sufficient expessiveness, (2) admits a well-defined semantics, and (3) allows for formalproofs. To that end we study clausal specifications over built-in algebras. To keep thingssimple, we consider built-in algebras only that are given as the initial model of a Hornclause specification. On top of this Horn clause specification new operators are (partially)defined by positive/negative conditional equations. In the first part of the paper wedefine three types of semantics for such a hierarchical specification: model-theoretic,operational, and rewrite-based semantics. We show that all these semantics coincide,provided some restrictions are met. We associate a distinguished algebra A spec to ahierachical specification spec. This algebra is initial in the class of all models of spec.In the second part of the paper we study how to prove a theorem (a clause) valid in thedistinguished algebra A spec . We first present an abstract framework for inductive theoremprovers. Then we instantiate this framework for proving inductive validity. Finally wegive some examples to show how concrete proofs are carried out.This report was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

We present an inference system for clausal theorem proving w.r.t. various kinds of inductivevalidity in theories specified by constructor-based positive/negative-conditional equations. The reductionrelation defined by such equations has to be (ground) confluent, but need not be terminating. Our con-structor-based approach is well-suited for inductive theorem proving in the presence of partially definedfunctions. The proposed inference system provides explicit induction hypotheses and can be instantiatedwith various wellfounded induction orderings. While emphasizing a well structured clear design of theinference system, our fundamental design goal is user-orientation and practical usefulness rather thantheoretical elegance. The resulting inference system is comprehensive and relatively powerful, but requiresa sophisticated concept of proof guidance, which is not treated in this paper.This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

Patdex is an expert system which carries out case-based reasoning for the fault diagnosis of complex machines. It is integrated in the Moltke workbench for technical diagnosis, which was developed at the university of Kaiserslautern over the past years, Moltke contains other parts as well, in particular a model-based approach; in Patdex where essentially the heuristic features are located. The use of cases also plays an important role for knowledge acquisition. In this paper we describe Patdex from a principal point of view and embed its main concepts into a theoretical framework.

We show how to prove ground confluence of term rewrite relations that areinduced by reductive systems of clausal rewrite rules. According to a well-knowncritical pair criterion it suffices for such systems to prove ground joinability ofa suitable set of 'critical clauses'. We outline how the latter can be done in asystematic fashion, using mathematical induction as a key concept of reasoning.

In recent years several computational systems and techniques fortheorem proving by analogy have been developed. The obvious prac-tical question, however, as to whether and when to use analogy hasbeen neglected badly in these developments. This paper addresses thisquestion, identifies situations where analogy is useful, and discussesthe merits of theorem proving by analogy in these situations. Theresults can be generalized to other domains.

We present a way to describe Reason Maintenance Systems using the sameformalism for justification based as well as for assumption based approaches.This formalism uses labelled formulae and thus is a special case of Gabbay'slabelled deductive systems. Since our approach is logic based, we are able toget a semantics oriented description of the systems in question.Instead of restricting ourselves to e.g. propositional Horn formulae, as wasdone in the past, we admit arbitrary logics. This enables us to characterizesystems as a whole, including both the reason maintenance component and theproblem solver, nevertheless maintaining a separation between the basic logicand the part that describes the label propagation. The possibility to freely varythe basic logic enables us to not only describe various existing systems, but canhelp in the design of completely new ones.We also show, that it is possible to implement systems based directly on ourlabelled logic and plead for "incremental calculi" crafted to attack undecidablelogics.Furthermore it is shown that the same approach can be used to handledefault reasoning, if the propositional labels are upgraded to first order.

A lot of the human ability to prove hard mathematical theorems can be ascribedto a problem-specific problem solving know-how. Such knowledge is intrinsicallyincomplete. In order to prove related problems human mathematicians, however,can go beyond the acquired knowledge by adapting their know-how to new relatedproblems. These two aspects, having rich experience and extending it by need, can besimulated in a proof planning framework: the problem-specific reasoning knowledge isrepresented in form of declarative planning operators, called methods; since these aredeclarative, they can be mechanically adapted to new situations by so-called meta-methods. In this contribution we apply this framework to two prominent proofs intheorem proving, first, we present methods for proving the ground completeness ofbinary resolution, which essentially correspond to key lemmata, and then, we showhow these methods can be reused for the proof of the ground completeness of lockresolution.

We investigate one of the classical problems of the theory ofterm rewriting, namely termination. We present an ordering for compar-ing higher-order terms that can be utilized for testing termination anddecreasingness of higher-order conditional term rewriting systems. Theordering relies on a first-order interpretation of higher-order terms anda suitable extension of the RPO.

This paper introduces a multi-valued variant of higher-order resolution and provesit correct and complete with respect to a natural multi-valued variant of Henkin'sgeneral model semantics. This resolution method is parametric in the number of truthvalues as well as in the particular choice of the set of connectives (given by arbitrarytruth tables) and even substitutional quantifiers. In the course of the completenessproof we establish a model existence theorem for this logical system. The workreported in this paper provides a basis for developing higher-order mechanizationsfor many non-classical logics.

Coloring terms (rippling) is a technique developed for inductive theorem proving which uses syntactic differences of terms to guide the proof search. Annotations (colors) to terms are used to maintain this information. This technique has several advantages, e.g. it is highly goal oriented and involves little search. In this paper we give a general formalization of coloring terms in a higher-order setting. We introduce a simply-typed lambda calculus with color annotations and present an appropriate (pre-)unification algorithm. Our work is a formal basis to the implementation of rippling in a higher-order setting which is required e.g. in case of middle-out reasoning. Another application is in the construction of natural language semantics, where the color annotations rule out linguistically invalid readings that are possible using standard higher-order unification.

In this paper we will present a design model (in the sense of KADS) for the domain of technical diagnosis. Based on this we will describe the fully implemented expert system shell MOLTKE 3.0, which integrates common knowledge acquisition methods with techniques developed in the fields of Model-Based Diagnosis and Machine Learning, especially Case-Based Reasoning.

We first show that ground term-rewriting systems can be completed in apolynomial number of rewriting steps, if the appropriate data structure for termsis used. We then apply this result to study the lengths of critical pair proofs innon-ground systems, and obtain bounds on the lengths of critical pair proofsin the non-ground case. We show how these bounds depend on the types ofinference steps that are allowed in the proofs.

We present an approach to prove several theorems in slightly different axiomsystems simultaneously. We represent the different problems as a taxonomy, i.e.a tree in which each node inherits all knowledge of its predecessors, and solve theproblems using inference steps on rules and equations with simple constraints,i.e. words identifying nodes in the taxonomy. We demonstrate that a substantialgain can be achieved by using taxonomic constraints, not only by avoiding therepetition of inference steps in the different problems but also by achieving runtimes that are much shorter than the accumulated run times when proving eachproblem separately.

We present a cooperation concept for automated theorem provers that isbased on a periodical interchange of selected results between several incarnationsof a prover. These incarnations differ from each other in the search heuristic theyemploy for guiding the search of the prover. Depending on the strengths' andweaknesses of these heuristics different knowledge and different communicationstructures are used for selecting the results to interchange.Our concept is easy to implement and can easily be integrated into alreadyexisting theorem provers. Moreover, the resulting cooperation allows the dis-tributed system to find proofs much faster than single heuristics working alone.We substantiate these claims by two case studies: experiments with the DiCoDesystem that is based on the condensed detachment rule and experiments with theSPASS system, a prover for first order logic with equality based on the super-position calculus. Both case studies show the improvements by our cooperationconcept.

This paper presents a new kind of abstraction, which has been developed for the purpose of proofplanning. The basic idea of this paper is to abstract a given theorem and to find an abstractproof of it. Once an abstract proof has been found, this proof has to be refined to a real proofof the original theorem. We present a goal oriented abstraction for the purpose of equality proofplanning, which is parameterized by common parts of the left- and right-hand sides of the givenequality. Therefore, this abstraction technique provides an abstract equality problem which ismore adequate than those generated by the abstractions known so far. The presented abstractionalso supports the heuristic search process based on the difference reduction paradigm. We give aformal definition of the abstract space including the objects and their manipulation. Furthermore,we prove some properties in order to allow an efficient implementation of the presented abstraction.

This report is a first attempt of formalizing the diagonalization proof technique.We give a strategy how to systematically construct diagonalization proofs: (i) findingan indexing relation, (ii) constructing a diagonal element, and (iii) making the implicitcontradiction of the diagonal element explicit. We suggest a declarative representationof the strategy and describe how it can be realized in a proof planning environment.

We examine different possibilities of coupling saturation-based theorem pro-vers by exchanging positive/negative information. We discuss which positive ornegative information is well-suited for cooperative theorem proving and show inan abstract way how this information can be used. Based on this study, we in-troduce a basic model for cooperative theorem proving. We present theoreticalresults regarding the exchange of positive/negative information as well as practi-cal methods and heuristics that allow for a gain of efficiency in comparison withsequential provers. Finally, we report on experimental studies conducted in theareas condensed detachment, unfailing completion, and superposition.The author was supported by the Deutsche Forschungsgemeinschaft (DFG).

Case-based knowledge acquisition, learning and problem solving for diagnostic real world tasks
(1999)

Within this paper we focus on both the solution of real, complex problems using expert system technology and the acquisition of the necessary knowledge from a case-based reasoning point of view. The development of systems which can be applied to real world problems has to meet certain requirements. E.g., all available information sources have to be identified and utilized. Normally, this involves different types of knowledge for which several knowledge representation schemes are needed, because no scheme is equally natural for all sources. Facing empirical knowledge it is important to complement the use of manually compiled, statistic and otherwise induced knowledge by the exploitation of the intuitive understandability of case-based mechanisms. Thus, an integration of case-based and alternative knowledge acquisition and problem solving mechanisms is necessary. For this, the basis is to define the "role" which case-based inference can "play" within a knowledge acquisition workbench. We will discuss a concrete casebased architecture, which has been applied to technical diagnosis problems, and its integration into a knowledge acquisition workbench which includes compiled knowledge and explicit deep models, additionally.

Proof planning is an alternative methodology to classical automated theorem prov-ing based on exhausitve search that was first introduced by Bundy [8]. The goal ofthis paper is to extend the current realm of proof planning to cope with genuinelymathematical problems such as the well-known limit theorems first investigated for au-tomated theorem proving by Bledsoe. The report presents a general methodology andcontains ideas that are new for proof planning and theorem proving, most importantlyideas for search control and for the integration of domain knowledge into a general proofplanning framework. We extend proof planning by employing explicit control-rules andsupermethods. We combine proof planning with constraint solving. Experiments showthe influence of these mechanisms on the performance of a proof planner. For instance,the proofs of LIM+ and LIM* have been automatically proof planned in the extendedproof planner OMEGA.In a general proof planning framework we rationally reconstruct the proofs of limittheorems for real numbers (IR) that were first computed by the special-purpose programreported in [6]. Compared with this program, the rational reconstruction has severaladvantages: It relies on a general-purpose problem solver; it provides high-level, hi-erarchical representations of proofs that can be expanded to checkable ND-proofs; itemploys declarative contol knowledge that is modularly organized.

In this paper we present an extensional higher-order resolution calculus that iscomplete relative to Henkin model semantics. The treatment of the extensionality princi-ples - necessary for the completeness result - by specialized (goal-directed) inference rulesis of practical applicability, as an implentation of the calculus in the Leo-System shows.Furthermore, we prove the long-standing conjecture, that it is sufficient to restrict the orderof primitive substitutions to the order of input formulae.

We present a methodology for coupling several saturation-based theoremprovers (running on different computers). The methodology is well-suited for re-alizing cooperation between different incarnations of one basic prover. Moreover,also different heterogeneous provers - that differ from each other in the calculusand in the heuristic they employ - can be coupled. Cooperation between the dif-ferent provers is achieved by periodically interchanging clauses which are selectedby so-called referees. We present theoretic results regarding the completeness ofthe system of cooperating provers as well as describe concrete heuristics for de-signing referees. Furthermore, we report on two experimental studies performedwith homogeneous and heterogeneous provers in the areas superposition and un-failing completion. The results reveal that the occurring synergetic effects leadto a significant improvement of performance.

A straightforward formulation of a mathematical problem is mostly not ad-equate for resolution theorem proving. We present a method to optimize suchformulations by exploiting the variability of first-order logic. The optimizingtransformation is described as logic morphisms, whose operationalizations aretactics. The different behaviour of a resolution theorem prover for the sourceand target formulations is demonstrated by several examples. It is shown howtactical and resolution-style theorem proving can be combined.

Deduktionssysteme
(1999)

Planverfahren
(1999)

We show how to buildup mathematical knowledge bases usingframes. We distinguish three differenttypes of knowledge: axioms, definitions(for introducing concepts like "set" or"group") and theorems (for relating theconcepts). The consistency of such know-ledge bases cannot be proved in gen-eral, but we can restrict the possibilit-ies where inconsistencies may be impor-ted to very few cases, namely to the oc-currence of axioms. Definitions and the-orems should not lead to any inconsisten-cies because definitions form conservativeextensions and theorems are proved to beconsequences.

In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.