### Refine

#### Year of publication

- 2011 (10) (remove)

#### Document Type

- Preprint (10) (remove)

#### Keywords

- autoregressive process (2)
- neural network (2)
- nonparametric regression (2)
- CUSUM statistic (1)
- Change analysis (1)
- INGARCH (1)
- Integer-valued time series (1)
- Knapsack problem (1)
- Mathematische Modellierung (1)
- Parallel volume (1)

In this paper we continue the investigation of the asymptotic behavior of the parallel volume in Minkowski spaces as the distance tends to infinity that was started in [13]. We will show that the difference of the parallel volume of the convex hull of a body and the parallel volume of the body itself can at most have order \(r^{d-2}\) in dimension \(d\). Then we will show that in the Euclidean case this difference can at most have order \(r^{d-3}\). We will also examine the asymptotic behavior of the derivative of this difference as the distance tends to infinity. After this we will compute the derivative of \(f_\mu (rK)\) in \(r\), where \(f_\mu\) is the Wills functional or a similar functional, \(K\) is a fixed body and \(rK\) is the Minkowski-product of \(r\) and \(K\). Finally we will use these results to examine Brownian paths and Boolean models and derive new proofs for formulae for intrinsic volumes.

This paper presents a new similarity measure and nonlocal filters for images corrupted by multiplicative noise. The considered filters are generalizations of the nonlocal means filter of Buades et al., which is known to be well suited for removing additive Gaussian noise. To adapt to different noise models, the patch comparison involved in this filter has first of all to be performed by a suitable noise dependent similarity measure. To this purpose, we start by studying a probabilistic measure recently proposed for general noise models by Deledalle et al. We analyze this measure in the context of conditional density functions and examine its properties for images corrupted by additive and multiplicative noise. Since it turns out to have unfavorable properties for multiplicative noise we deduce a new similarity measure consisting of a probability density function specially chosen for this type of noise. The properties of our new measure are studied theoretically as well as by numerical experiments. To obtain the final nonlocal filters we apply a weighted maximum likelihood estimation framework, which also incorporates the noise statistics. Moreover, we define the weights occurring in these filters using our new similarity measure and propose different adaptations to further improve the results. Finally, restoration results for images corrupted by multiplicative Gamma and Rayleigh noise are presented to demonstrate the very good performance of our nonlocal filters.

In recent years, convex optimization methods were successfully applied for various image processing tasks and a large number of first-order methods were designed to minimize the corresponding functionals. Interestingly, it was shown recently by Grewenig et al. that the simple idea of so-called “superstep cycles” leads to very efficient schemes for time-dependent (parabolic) image enhancement problems as well as for steady state (elliptic) image compression tasks. The ”superstep cycles” approach is similar to the nonstationary (cyclic)
Richardson method which has been around for over sixty years.
In this paper, we investigate the incorporation of superstep cycles into the gradient descent reprojection method. We show for two problems in compressive sensing and image processing, namely the LASSO approach and the Rudin-Osher-Fatemi model that the resulting simple cyclic gradient descent reprojection algorithm can numerically compare with various state-of-the-art first-order algorithms. However, due to the nonlinear
projection within the algorithm convergence proofs even under restrictive assumptions on the linear operators appear to be hard. We demonstrate the difficulties by studying the
simplest case of a two-cycle algorithm in R^2 with projections onto the Euclidian ball.

A standard approach for deducing a variational denoising method is the maximum a posteriori strategy. Here, the denoising result is chosen in such a way that it maximizes the conditional density function of the reconstruction given its observed noisy version. Unfortunately, this approach does not imply that the empirical distribution of the reconstructed noise components follows the statistics of the assumed noise model. In this paper, we propose to overcome this drawback by applying an additional transformation to the random vector modeling the noise. This transformation is then incorporated into the standard denoising approach and leads to a more sophisticated data fidelity term, which forces the removed noise components to have the desired statistical properties. The good properties of our new approach are demonstrated for additive Gaussian noise by numerical examples. Our method shows to be especially well suited for data containing high frequency structures, where other denoising methods which assume a certain smoothness of the signal cannot restore the small structures.

We consider a variant of a knapsack problem with a fixed cardinality constraint. There are three objective functions to be optimized: one real-valued and two integer-valued objectives. We show that this problem can be solved efficiently by a local search. The algorithm utilizes connectedness of a subset of feasible solutions and has optimal run-time.

In this paper we develop testing procedures for the detection of structural changes in nonlinear autoregressive processes. For the detection procedure we model the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression, can be extended to this case. The limit distribution under the null hypothesis is obtained, which is needed to construct asymptotic tests. For a large class of alternatives it is shown that the tests have asymptotic power one. In this case, we obtain a consistent change-point estimator which is related to the test statistics. Power and size are further investigated in a small simulation study with a particular emphasis on situations where the model is misspecified, i.e. the data is not generated by a neural network but some other regression function. As illustration, an application on the Nile data set as well as S&P log-returns is given.

We consider an autoregressive process with a nonlinear regression function that is modeled by a feedforward neural network. We derive a uniform central limit theorem which is useful in the context of change-point analysis. We propose a test for a change in the autoregression function which - by the uniform central limit theorem - has asymptotic power one for a large class of alternatives including local alternatives.

The shortest path problem in which the \((s,t)\)-paths \(P\) of a given digraph \(G =(V,E)\) are compared with respect to the sum of their edge costs is one of the best known problems in combinatorial optimization. The paper is concerned with a number of variations of this problem having different objective functions like bottleneck, balanced, minimum deviation, algebraic sum, \(k\)-sum and \(k\)-max objectives, \((k_1, k_2)-max, (k_1, k_2)\)-balanced and several types of trimmed-mean objectives. We give a survey on existing algorithms and propose a general model for those problems not yet treated in literature. The latter is based on the solution of resource constrained shortest path problems with equality constraints which can be solved in pseudo-polynomial time if the given graph is acyclic and the number of resources is fixed. In our setting, however, these problems can be solved in strongly polynomial time. Combining this with known results on \(k\)-sum and \(k\)-max optimization for general combinatorial problems, we obtain strongly polynomial algorithms for a variety of path problems on acyclic and general digraphs.

Insbesondere bei der industriellen Nutzung tiefer geothermischer Systeme gibt es Risiken, die im Hinblick auf eine zukunftsträchtige Rolle der Ressource "Geothermie" innerhalb der Energiebranche eingeschätzt und minimiert werden müssen. Zur Förderung und Unterstützung dieses Prozesses kann die Mathematik einen entscheidenden Beitrag leisten. Um dies voranzutreiben haben wir zur Charakterisierung tiefer geothermischer Systeme ein Säulenmodell entwickelt, das die Bereiche Exploration, Bau und Produktion näher beleuchtet. Im Speziellen beinhalten die Säulen: Seismische Erkundung, Gravimetrie/Geomagnetik, Transportprozesse, Spannungsfeld.

In this paper, we discuss the problem of testing for a changepoint in the structure
of an integer-valued time series. In particular, we consider a test statistic
of cumulative sum (CUSUM) type for general Poisson autoregressions of order
1. We investigate the asymptotic behaviour of conditional least-squares estimates
of the parameters in the presence of a changepoint. Then, we derive the
asymptotic distribution of the test statistic under the hypothesis of no change,
allowing for the calculation of critical values. We prove consistency of the test,
i.e. asymptotic power 1, and consistency of the corresponding changepoint estimate.
As an application, we have a look at changepoint detection in daily
epileptic seizure counts from a clinical study.