### Refine

#### Document Type

- Preprint (9) (remove)

#### Keywords

- Mixture Models (2)
- autoregressive process (2)
- geometric ergodicity (2)
- neural network (2)
- nonparametric regression (2)
- AR-ARCH (1)
- CUSUM statistic (1)
- Change analysis (1)
- Change analysis, nonparametric regression, nonlinear regression, autoregressive time series, sequential test, integer-valued time series (1)
- Geometric Ergodicity (1)
- INGARCH (1)
- Identifiability (1)
- Integer-valued time series (1)
- MLE (1)
- Markov Chain (1)
- Markov switching (1)
- Multivariate (1)
- Neural networks (1)
- Nonparametric AR-ARCH (1)
- Poisson autoregression (1)
- change point (1)
- changepoint test (1)
- consistency (1)
- estimation (1)
- hidden Markov (1)
- mixing (1)
- mixture models (1)
- normality (1)
- stationarity (1)
- uniform central limit theorem (1)

In this paper we develop testing procedures for the detection of structural changes in nonlinear autoregressive processes. For the detection procedure we model the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression, can be extended to this case. The limit distribution under the null hypothesis is obtained, which is needed to construct asymptotic tests. For a large class of alternatives it is shown that the tests have asymptotic power one. In this case, we obtain a consistent change-point estimator which is related to the test statistics. Power and size are further investigated in a small simulation study with a particular emphasis on situations where the model is misspecified, i.e. the data is not generated by a neural network but some other regression function. As illustration, an application on the Nile data set as well as S&P log-returns is given.

In this paper we consider a CHARME Model, a class of generalized mixture of nonlinear nonparametric AR-ARCH time series. We apply the theory of Markov models to derive asymptotic stability of this model. Indeed, the goal is to provide some sets of conditions under which our model is geometric ergodic and therefore satisfies some mixing conditions. This result can be considered as the basis toward an asymptotic theory for our model.

A large class of estimators including maximum likelihood, least squares and M-estimators are based on estimating functions. In sequential change point detection related monitoring functions can be used to monitor new incoming observations based on an initial estimator, which is computationally efficient because possible numeric optimization is restricted to the initial estimation. In this work, we give general regularity conditions under which we derive the asymptotic null behavior of the corresponding tests in addition to their behavior under alternatives, where conditions become particularly simple for sufficiently smooth estimating and monitoring functions. These regularity conditions unify and even extend a large amount of existing procedures in the literature, while they also allow us to derive monitoring schemes in time series that have not yet been considered in the literature including non-linear autoregressive time series and certain count time series such as binary or Poisson autoregressive models. We do not assume that the estimating and monitoring function are equal or even of the same dimension, allowing for example to combine a non-robust but more precise initial estimator with a robust monitoring scheme. Some simulations and data examples illustrate the usefulness of the described procedures.

In this paper we consider a multivariate switching model, with constant states means
and covariances. In this model, the switching mechanism between the basic states of
the observed time series is controlled by a hidden Markov chain. As illustration, under
Gaussian assumption on the innovations and some rather simple conditions, we prove
the consistency and asymptotic normality of the maximum likelihood estimates of the model parameters.

Maximum Likelihood Estimators for Markov Switching Autoregressive Processes with ARCH Component
(2009)

We consider a mixture of AR-ARCH models where the switching between the basic states of the observed time series is controlled by a hidden Markov chain. Under simple conditions, we prove consistency and asymptotic normality of the maximum likelihood parameter estimates combining general results on asymptotics of Douc et al (2004) and of geometric ergodicity of Franke et al (2007).

In this paper, we discuss the problem of testing for a changepoint in the structure
of an integer-valued time series. In particular, we consider a test statistic
of cumulative sum (CUSUM) type for general Poisson autoregressions of order
1. We investigate the asymptotic behaviour of conditional least-squares estimates
of the parameters in the presence of a changepoint. Then, we derive the
asymptotic distribution of the test statistic under the hypothesis of no change,
allowing for the calculation of critical values. We prove consistency of the test,
i.e. asymptotic power 1, and consistency of the corresponding changepoint estimate.
As an application, we have a look at changepoint detection in daily
epileptic seizure counts from a clinical study.

We consider an autoregressive process with a nonlinear regression function that is modeled by a feedforward neural network. We derive a uniform central limit theorem which is useful in the context of change-point analysis. We propose a test for a change in the autoregression function which - by the uniform central limit theorem - has asymptotic power one for a large class of alternatives including local alternatives.

In this paper we develop a data-driven mixture of vector autoregressive models with exogenous components. The process is assumed to change regimes according to an underlying Markov process. In contrast to the hidden Markov setup, we allow the transition probabilities of the underlying Markov process to depend on past time series values and exogenous variables. Such processes have potential applications to modeling brain signals. For example, brain activity at time t (measured by electroencephalograms) will can be modeled as a function of both its past values as well as exogenous variables (such as visual or somatosensory stimuli). Furthermore, we establish stationarity, geometric ergodicity and the existence of moments for these processes under suitable conditions on the parameters of the model. Such properties are important for understanding the stability properties of the model as well as deriving the asymptotic behavior of various statistics and model parameter estimators.