### Refine

#### Document Type

- Preprint (2) (remove)

#### Keywords

- Dense gas (1)
- Enskog equation (1)
- Kinetic theory (1)
- discrete element method (1)
- finite pointset method (1)
- granular flow (1)
- kinetic theory (1)
- particle method (1)
- shear flow (1)
- shock wave (1)

Starting from the mollified version of the Enskog equation for a hard-sphere fluid, a grid-free algorithm to obtain the solution is proposed. The algorithm is based on the finite pointset method. For illustration, it is applied to a Riemann problem. The shock-wave solution is compared to the results of Frezzotti and Sgarra where a good agreement is found.

Comparison of kinetic theory and discrete element schemes for modelling granular Couette flows
(1999)

Discrete element based simulations of granular flow in a 2d velocity space are compared with a particle code that solves kinetic granular flow equations in two and three dimensions. The binary collisions of the latter are governed by the same forces as for the discrete elements. Both methods are applied to a granular shear flow of equally sized discs and spheres. The two dimensional implementation of the kinetic approach shows excellent agreement with the results of the discrete element simulations. When changing to a three dimensional velocity space, the qualitative features of the flow are maintained. However, some flow properties change quantitatively.