### Refine

#### Document Type

- Preprint (3) (remove)

#### Keywords

- Earth's disturbing potential (1)
- Molodensky Problem (1)
- Molodensky problem (1)
- Wavelet Analysis auf regulären Flächen (1)
- deflections of the vertical (1)
- harmonic scaling functions and wavelets (1)
- local multiscale (1)
- locally supported (Green's) vector wavelets (1)
- multiscale approximation on regular telluroidal surfaces (1)

As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.

Based on the well-known results of classical potential theory, viz. the limit and jump relations for layer integrals, a numerically viable and e±cient multiscale method of approximating the disturbing potential from gravity anomalies is established on regular surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The essential idea is to use scale dependent regularizations of the layer potentials occurring in the integral formulation of the linearized Molodensky problem to introduce scaling functions and wavelets on the telluroid. As an application of our multiscale approach some numerical examples are presented on an ellipsoidal telluroid.

By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.