### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (619) (remove)

#### Language

- English (619) (remove)

#### Keywords

- Visualisierung (13)
- finite element method (8)
- Finite-Elemente-Methode (7)
- Algebraische Geometrie (6)
- Numerische Strömungssimulation (6)
- Visualization (6)
- Computergraphik (5)
- Finanzmathematik (5)
- Mobilfunk (5)
- Optimization (5)

#### Faculty / Organisational entity

- Fachbereich Mathematik (218)
- Fachbereich Informatik (138)
- Fachbereich Maschinenbau und Verfahrenstechnik (95)
- Fachbereich Chemie (58)
- Fachbereich Elektrotechnik und Informationstechnik (45)
- Fachbereich Biologie (27)
- Fachbereich Sozialwissenschaften (15)
- Fachbereich Wirtschaftswissenschaften (8)
- Fachbereich ARUBI (5)
- Fachbereich Physik (5)
- Fraunhofer (ITWM) (4)
- Fachbereich Raum- und Umweltplanung (3)
- Universitätsbibliothek (1)

The aim of this dissertation is to explain processes in recruitment by gaining a better understanding of how perceptions evolve and how recruitment outcomes and perceptions are influenced. To do so, this dissertation takes a closer look at the formation of fit perceptions, the effects of top employer awards on pre-hire recruitment outcomes, and on how perceptions about external sources are influenced.

Matter-wave Optics of Dark-state Polaritons: Applications to Interferometry and Quantum Information
(2006)

The present work "Materwave Optics with Dark-state Polaritons: Applications to Interferometry and Quantum Information" deals in a broad sense with the subject of dark-states and in particular with the so-called dark-state polaritons introduced by M. Fleischhauer and M. D. Lukin. The dark-state polaritons can be regarded as a combined excitation of electromagnetic fields and spin/matter-waves. Within the framework of this thesis the special optical properties of the combined excitation are studied. On one hand a new procedure to spatially manipulate and to increase the excitation density of stored photons is described and on the other hand the properties are used to construct a new type of Sagnac Hybrid interferometer. The thesis is devided into four parts. In the introduction all notions necessary to understand the work are described, e.g.: electromagnetically induced transparency (EIT), dark-state polaritons and the Sagnac effect. The second chapter considers the method developed by A. Andre and M. D. Lukin to create stationary light pulses in specially dressed EIT-media. In a first step a set of field equations is derived and simplified by introducing a new set of normal modes. The absorption of one of the normal modes leads to the phenomenon of pulse-matching for the other mode and thereby to a diffusive spreading of its field envelope. All these considerations are based on a homogeneous field setup of the EIT preparation laser. If this restriction is dismissed one finds that a drift motion is superimposed to the diffusive spreading. By choosing a special laser configuration the drift motion can be tailored such that an effective force is created that counteracts the spreading. Moreover, the force can not only be strong enough to compensate the diffusive spreading but also to exceed this dynamics and hence to compress the field envelope of the excitation. The compression can be discribed using a Fokker-Planck equation of the Ornstein-Uhlenbeck type. The investigations show that the compression leads to an excitation of higher-order modes which decay very fast. In the last section of the chapter this exciation will be discussed in more detail and conditions will be given how the excitation of higher-order modes can be avoided or even suppressed. All results given in the chapter are supported by numerical simulatons. In the third chapter the matterwave optical properties of the dark-state polaritons will be studied. They will be used to construct a light-matterwave hybrid Sagnac interferometer. First the principle setup of such an interferometer will be sketched and the relevant equations of motion of light-matter interaction in a rotating frame will be derived. These form the basis of the following considerations of the dark-state polariton dynamics with and without the influence of external trapping potentials on the matterwave part of the polariton. It will be shown that a sensitivity enhancement compared to a passive laser gyroscope can be anticipated if the gaseous medium is initially in a superfluid quantum state in a ring-trap configuration. To achieve this enhancement a simultaneous coherence and momentum transfer is furthermore necessary. In the last part of the chapter the quantum sensitivity limit of the hybrid interferometer is derived using the one-particle density matrix equations incorporating the motion of the particles. To this end the Maxwell-Bloch equations are considered perturbatively in the rotation rate of the noninertial frame of reference and the susceptibility of the considered 3-level \(\Lambda\)-type system is derived in arbitrary order of the probe-field. This is done to determine the optimum operation point. With its help the anticipated quantum sensitivity of the light-matterwave hybrid Sagnac interferometer is calculated at the shot-noise limit and the results are compared to state-of-the-art laser and matterwave Sagnac interferometers. The last chapter of the thesis originates from a joint theoretical and experimental project with the AG Bergmann. This chapter does no longer consider the dark-state polaritons of the last two chapters but deals with the more general concept of dark states and in particular with the transient velocity selective dark states as introduced by E. Arimondo et al. In the experiment we could for the first time measure these states. The chapter starts with an introduction into the concept of velocity selective dark states as they occur in a \(\Lambda\)-configuration. Then we introduce the transient velocity selective dark-states as they occur in an particular extension of the \(\Lambda\)-system. For later use in the simulations the relevant equations of motion are derived in detail. The simulations are based on the solution of the generalized optical Bloch equations. Finally the experimental setup and procedure are explained and the theoretical and experimental results are compared.

A series of (oligo)phenthiazines, thiazolium salts and sulfonic acid functionalized organic/inorganic hybrid materials were synthesized. The organic groups were covalently bound on the inorganic surface through reactions of organosilane precursors with TEOS or with the silanol groups of material surface. These synthetic methods are called the co-condensation process and the post grafting. The structures and the textural parameters of the generated hybrid materials were characterized by XRD, N2 adsorption-desorption measurements, SEM and TEM. The incorporations of the organic groups were verified by elemental analysis, thermogravimetric analysis, FT-IR, UV-Vis, EPR, CV, as well as by 13C CP-MAS NMR and 29Si CP-MAS NMR spectroscopy. Introduction of various organic groups endow different phsysical, chemical properties to these hybrid materials. The (oligo)phenothiazines provide a group of novel redox acitive hybrid materials with special electronic and optic properties. The thiazolium salts modified materials were applied as heterogenized organo catalysts for the benzoin condensation and the cross-coupling of aldehydes with acylimines to yield a-amido ketones. The sulfonic acid containing materials can not only be used as Broensted acid catalysts, but also can serve as ion exchangable supports for further modifications and applications.

Nanoparticle-Filled Thermoplastics and Thermoplastic Elastomer: Structure-Property Relationships
(2012)

The present work focuses on the structure-property relationships of
particulate-filled thermoplastics and thermoplastic elastomer (TPE). In this work
two thermoplastics and one TPE were used as polymer matrices, i.e. amorphous
bisphenol-A polycarbonate (PC), semi-crystalline isotactic polypropylene (iPP),
and a block copolymer poly(butylene terephthalate)-block-poly(tetramethylene
glycol) TPE(PBT-PTMG). For PC, a selected type of various Aerosil® nano-SiO2
types was used as filler to improve the thermal and mechanical properties by
maintaining the transparency of PC matrix. Different types of SiO2 and TiO2
nanoparticles with different surface polarity were used for iPP. The goal was to
examine the influence of surface polarity and chemical nature of nanoparticles on
the thermal, mechanical and morphological properties of iPP composites. For
TPE(PBT-PTMG), three TiO2 particles were used, i.e. one grade with hydroxyl
groups on the particle surface and the other two grades are surface-modified with
metal and metal oxides, respectively. The influence of primary size and dispersion
quality of TiO2 particles on the properties of TPE(PBT-PTMG)/TiO2 composites
were determined and discussed.
All polymer composites were produced by direct melt blending in a twin-screw
extruder via masterbatch technique. The dispersion of particles was examined by
using scanning electron microscopy (SEM) and micro-computerized tomography
(μCT). The thermal and crystalline properties of polymer composites were characterized by using thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC). The mechanical and thermomechanical properties
were determined by using mechanical tensile testing, compact tension and
Charpy impact as well as dynamic-mechanical thermal analysis (DMTA).
The SEM results show that the unpolar-surface modified nanoparticles are better
dispersed in polymer matrices as iPP than polar-surface nanoparticles, especially
in case of using Aeroxide® TiO2 nanoparticles. The Aeroxide® TiO2 nanoparticles
with a polar surface due to Ti-OH groups result in a very high degree of
agglomeration in both iPP and TPE matrices because of strong van der Waals
interactions among particles (hydrogen bonding). Compared to unmodified
Aeroxide® TiO2 nanoparticles, the other grades of surface modified TiO2 particles
are very homogenously dispersed in used iPP and TPE(PBT-PTMG). The
incorporation of SiO2 nanoparticles into bisphenol-A PC significantly increases
the mechanical properties of PC/SiO2 nanocomposites, particularly the resistance
against environmental stress crazing (ESC). However, the transparency of
PC/SiO2 nanocomposites decreases with increasing nanoparticle content and
size due to a mismatch of infractive indices of PC and SiO2 particles. The different
surface polarity of nanoparticles in iPP shows evident influence on properties of
iPP composites. Among iPP/SiO2 nanocomposites, the nanocomposite
containing SiO2 nanoparticles with a higher degree of hydrophobicity shows
improved fracture and impact toughness compared to the other iPP/SiO2
composites. The TPE(PBT-PTMG)/TiO2 composites show much better thermal and mechanical properties than neat TPE(PBT-PTMG) due to strong chemical
interactions between polymer matrix and TiO2 particles. In addition, better
dispersion quality of TiO2 particles in used TPE(PBT-PTMG) leads to dramatically
improved mechanical properties of TPE(PBT-PTMG)/TiO2 composites.

Whole-body vibrations (WBV) have adverse effects on ride comfort and human health. Suspension seats have an important influence on the WBV severity. In this study, WBV were measured on a medium-sized compact wheel loader (CWL) in its typical operations. The effect of short-term exposure to the WBV on the ride comfort was evaluated according to ISO 2631-1:1985 and ISO 2631-1:1997. ISO 2631-1:1997 and ISO 2631-5:2004 were adopted to evaluate the effect of long-term exposure to the WBV on the human health. Reasons for the different evaluation results obtained according to ISO 2631-1:1997 and ISO 2631-5:2004 were explained in this study. The WBV measurements were carried out in cases where the driver wore a lap belt or a four-point seat harness and in the case where the driver did not wear any safety belt. The seat effective amplitude transmissibility (SEAT) and the seat transmissibility in the frequency domain in these three cases were analyzed to investigate the effect of a safety belt on the seat transmissibility. Seat tests were performed on a multi-axis shaking table in laboratory to study the dynamic behavior of a suspension seat under the vibration excitations measured on the CWL. The WBV intensity was reduced by optimizing the vertical and the longitudinal seat suspension systems with the help of computational simulations. For the optimization multi-body models of the seat-dummy system in the laboratory seat tests and the seat-driver system in the field vibration measurements were built and validated.

The main purpose of the study was to improve the physical properties of the modelling of compressed materials, especially fibrous materials. Fibrous materials are finding increasing application in the industries. And most of the materials are compressed for different applications. For such situation, we are interested in how the fibre arranged, e.g. with which distribution. For given materials it is possible to obtain a three-dimensional image via micro computed tomography. Since some physical parameters, e.g. the fibre lengths or the directions for points in the fibre, can be checked under some other methods from image, it is beneficial to improve the physical properties by changing the parameters in the image.
In this thesis, we present a new maximum-likelihood approach for the estimation of parameters of a parametric distribution on the unit sphere, which is various as some well known distributions, e.g. the von-Mises Fisher distribution or the Watson distribution, and for some models better fit. The consistency and asymptotic normality of the maximum-likelihood estimator are proven. As the second main part of this thesis, a general model of mixtures of these distributions on a hypersphere is discussed. We derive numerical approximations of the parameters in an Expectation Maximization setting. Furthermore we introduce a non-parametric estimation of the EM algorithm for the mixture model. Finally, we present some applications to the statistical analysis of fibre composites.

In recent years, nanofiller-reinforced polymer composites have attracted considerable
interest from numerous researchers, since they can offer unique mechanical,
electrical, optical and thermal properties compared to the conventional polymer
composites filled with micron-sized particles or short fibers. With this background, the
main objective of the present work was to investigate the various mechanical
properties of polymer matrices filled with different inorganic rigid nanofillers, including
SiOB2B, TiOB2B, AlB2BOB3B and multi-walled carbon nanotubes (MWNT). Further, special
attention was paid to the fracture behaviours of the polymer nanocomposites. The
polymer matrices used in this work contained two types of epoxy resin (cycloaliphatic
and bisphenol-F) and two types of thermoplastic polymer (polyamide 66 and isotactic
polypropylene).
The epoxy-based nanocomposites (filled with nano-SiOB2B) were formed in situ by a
special sol-gel technique supplied by nanoresins AG. Excellent nanoparticle
dispersion was achieved even at rather high particle loading. The almost
homogeneously distributed nanoparticles can improve the elastic modulus and
fracture toughness (characterized by KBICB and GBICB) simultaneously. According to
dynamic mechanical and thermal analysis (DMTA), the nanosilica particles in epoxy
resins possessed considerable "effective volume fraction" in comparison with their
actual volume fraction, due to the presence of the interphase. Moreover, AFM and
high-resolution SEM observations also suggested that the nanosilica particles were
coated with a polymer layer and therefore a core-shell structure of particle-matrix was
expected. Furthermore, based on SEM fractography, several toughening
mechanisms were considered to be responsible for the improvement in toughness,
which included crack deflection, crack pinning/bowing and plastic deformation of
matrix induced by nanoparticles.
The PA66 or iPP-based nanocomposites were fabricated by a conventional meltextrusion
technique. Here, the nanofiller content was set constant as 1 vol.%. Relatively good particle dispersion was found, though some small aggregates still
existed. The elastic modulus of both PA66 and iPP was moderately improved after
incorporation of the nanofillers. The fracture behaviours of these materials were
characterized by an essential work fracture (EWF) approach. In the case of PA66
system, the EWF experiments were carried out over a broad temperature range
(23~120 °C). It was found that the EWF parameters exhibited high temperature
dependence. At most testing temperatures, a small amount of nanoparticles could
produce obvious toughening effects at the cost of reduction in plastic deformation of
the matrix. In light of SEM fractographs and crack opening tip (COD) analysis, the
crack blunting induced by nanoparticles might be the major source of this toughening.
The fracture behaviours of PP filled with MWNTs were investigated over a broad
temperature range (-196~80 °C) in terms of notched impact resistance. It was found
that MWNTs could enhance the notched impact resistance of PP matrix significantly
once the testing temperature was higher than the glass transition temperature (TBgB) of
neat PP. At the relevant temperature range, the longer the MWNTs, the better was
the impact resistance. SEM observation revealed three failure modes of nanotubes:
nanotube bridging, debonding/pullout and fracture. All of them would contribute to
impact toughness to a degree. Moreover, the nanotube fracture was considered as
the major failure mode. In addition, the smaller spherulites induced by the nanotubes
would also benefit toughness.

Nowadays, accounting, charging and billing users' network resource consumption are commonly used for the purpose of facilitating reasonable network usage, controlling congestion, allocating cost, gaining revenue, etc. In traditional IP traffic accounting systems, IP addresses are used to identify the corresponding consumers of the network resources. However, there are some situations in which IP addresses cannot be used to identify users uniquely, for example, in multi-user systems. In these cases, network resource consumption can only be ascribed to the owners of these hosts instead of corresponding real users who have consumed the network resources. Therefore, accurate accountability in these systems is practically impossible. This is a flaw of the traditional IP address based IP traffic accounting technique. This dissertation proposes a user based IP traffic accounting model which can facilitate collecting network resource usage information on the basis of users. With user based IP traffic accounting, IP traffic can be distinguished not only by IP addresses but also by users. In this dissertation, three different schemes, which can achieve the user based IP traffic accounting mechanism, are discussed in detail. The inband scheme utilizes the IP header to convey the user information of the corresponding IP packet. The Accounting Agent residing in the measured host intercepts IP packets passing through it. Then it identifies the users of these IP packets and inserts user information into the IP packets. With this mechanism, a meter located in a key position of the network can intercept the IP packets tagged with user information, extract not only statistic information, but also IP addresses and user information from the IP packets to generate accounting records with user information. The out-of-band scheme is a contrast scheme to the in-band scheme. It also uses an Accounting Agent to intercept IP packets and identify the users of IP traffic. However, the user information is transferred through a separated channel, which is different from the corresponding IP packets' transmission. The Multi-IP scheme provides a different solution for identifying users of IP traffic. It assigns each user in a measured host a unique IP address. Through that, an IP address can be used to identify a user uniquely without ambiguity. This way, traditional IP address based accounting techniques can be applied to achieve the goal of user based IP traffic accounting. In this dissertation, a user based IP traffic accounting prototype system developed according to the out-of-band scheme is also introduced. The application of user based IP traffic accounting model in the distributed computing environment is also discussed.

This thesis is devoted to deal with the stochastic optimization problems in various situations with the aid of the Martingale method. Chapter 2 discusses the Martingale method and its applications to the basic optimization problems, which are well addressed in the literature (for example, [15], [23] and [24]). In Chapter 3, we study the problem of maximizing expected utility of real terminal wealth in the presence of an index bond. Chapter 4, which is a modification of the original research paper joint with Korn and Ewald [39], investigates an optimization problem faced by a DC pension fund manager under inflationary risk. Although the problem is addressed in the context of a pension fund, it presents a way of how to deal with the optimization problem, in the case there is a (positive) endowment. In Chapter 5, we turn to a situation where the additional income, other than the income from returns on investment, is gained by supplying labor. Chapter 6 concerns a situation where the market considered is incomplete. A trick of completing an incomplete market is presented there. The general theory which supports the discussion followed is summarized in the first chapter.

Automata theory has given rise to a variety of automata models that consist
of a finite-state control and an infinite-state storage mechanism. The aim
of this work is to provide insights into how the structure of the storage
mechanism influences the expressiveness and the analyzability of the
resulting model. To this end, it presents generalizations of results about
individual storage mechanisms to larger classes. These generalizations
characterize those storage mechanisms for which the given result remains
true and for which it fails.
In order to speak of classes of storage mechanisms, we need an overarching
framework that accommodates each of the concrete storage mechanisms we wish
to address. Such a framework is provided by the model of valence automata,
in which the storage mechanism is represented by a monoid. Since the monoid
serves as a parameter to specifying the storage mechanism, our aim
translates into the question: For which monoids does the given
(automata-theoretic) result hold?
As a first result, we present an algebraic characterization of those monoids
over which valence automata accept only regular languages. In addition, it
turns out that for each monoid, this is the case if and only if valence
grammars, an analogous grammar model, can generate only context-free
languages.
Furthermore, we are concerned with closure properties: We study which
monoids result in a Boolean closed language class. For every language class
that is closed under rational transductions (in particular, those induced by
valence automata), we show: If the class is Boolean closed and contains any
non-regular language, then it already includes the whole arithmetical
hierarchy.
This work also introduces the class of graph monoids, which are defined by
finite graphs. By choosing appropriate graphs, one can realize a number of
prominent storage mechanisms, but also combinations and variants thereof.
Examples are pushdowns, counters, and Turing tapes. We can therefore relate
the structure of the graphs to computational properties of the resulting
storage mechanisms.
In the case of graph monoids, we study (i) the decidability of the emptiness
problem, (ii) which storage mechanisms guarantee semilinear Parikh images,
(iii) when silent transitions (i.e. those that read no input) can be
avoided, and (iv) which storage mechanisms permit the computation of
downward closures.

Continuum Mechanical Modeling of Dry Granular Systems: From Dilute Flow to Solid-Like Behavior
(2014)

In this thesis, we develop a granular hydrodynamic model which covers the three principal regimes observed in granular systems, i.e. the dilute flow, the dense flow and the solid-like regime. We start from a kinetic model valid at low density and extend its validity to the granular solid-like behavior. Analytical and numerical results show that this model reproduces a lot of complex phenomena like for instance slow viscoplastic motion, critical states and the pressure dip in sand piles. Finally we formulate a 1D version of the full model and develop a numerical method to solve it. We present two numerical examples, a filling simulation and the flow on an inclined plane where the three regimes are included.

Fucoidan is a class of biopolymers mainly found in brown seaweeds. Due to its diverse medical importance, homogenous supply as well as a GMP-compliant product is of a special interest. Therefore, in addition to optimization of its extraction and purification from classical resources, other techniques were tried (e.g., marine tissue culture and heterologous expression of enzymes involved in its biosynthesis). Results showed that 17.5% (w/w) crude fucoidan after pre-treatment and extraction was obtained from the brown macroalgae F. vesiculosus. Purification by affinity chromatography improved purity relative to the commercial purified product. Furthermore, biological investigations revealed improved anti-coagulant and anti-viral activities compared with crude fucoidan. Furthermore, callus-like and protoplast cultures as well as bioreactor cultivation were developed from F. vesiculosus representing a new horizon to produce fucoidan biotechnologically. Moreover, heterologous expression of several enzymes involved in its biosynthesis by E. coli (e.g., FucTs and STs) demonstrated the possibility to obtain active enzymes that could be utilized in enzymatic in vitro synthesis of fucoidan. All these competitive techniques could provide the global demands from fucoidan.

On the Extended Finite Element Method for the Elasto-Plastic Deformation of Heterogeneous Materials
(2015)

This thesis is concerned with the extended finite element method (XFEM) for deformation analysis of three-dimensional heterogeneous materials. Using the "enhanced abs enrichment" the XFEM is able to reproduce kinks in the displacements and therewith jumps in the strains within elements of the underlying tetrahedral finite element mesh. A complex model for the micro structure reconstruction of aluminum matrix composite AMC225xe and the modeling of its macroscopic thermo-mechanical plastic deformation behavior is presented, using the XFEM. Additionally, a novel stabilization algorithm is introduced for the XFEM. This algorithm requires preprocessing only.

This work introduces a promising concept for the preparation of new nano-sized receptors. Mixed monolayer protected gold nanoparticles (AuNPs) for low molecular weight compounds were prepared featuring functional groups on their surfaces. It has been shown that these AuNPs can engage in interactions with peptides in aqueous media. Quantitative binding information was obtained from DOSY-NMR titrations indicating that nanoparticles containing a combination of three orthogonal functional groups are more efficient in binding to dipeptides than mono or difunctionalised analogues. The strategy is highly modular and easily allows adapting the receptor selectivity to a
given substrate by varying the type, number, and ratio of binding sites on the nanoparticle
surface.

The safety of embedded systems is becoming more and more important nowadays. Fault Tree Analysis (FTA) is a widely used technique for analyzing the safety of embedded systems. A standardized tree-like structure called a Fault Tree (FT) models the failures of the systems. The Component Fault Tree (CFT) provides an advanced modeling concept for adapting the traditional FTs to the hierarchical architecture model in system design. Minimal Cut Set (MCS) analysis is a method that works for qualitative analysis based on the FTs. Each MCS represents a minimal combination of component failures of a system called basic events, which may together cause the top-level system failure. The ordinary representations of MCSs consist of plain text and data tables with little additional supporting visual and interactive information. Importance analysis based on FTs or CFTs estimates the contribution of each potential basic event to a top-level system failure. The resulting importance values of basic events are typically represented in summary views, e.g., data tables and histograms. There is little visual integration between these forms and the FT (or CFT) structure. The safety of a system can be improved using an iterative process, called the safety improvement process, based on FTs taking relevant constraints into account, e.g., cost. Typically, relevant data regarding the safety improvement process are presented across multiple views with few interactive associations. In short, the ordinary representation concepts cannot effectively facilitate these analyses.
We propose a set of visualization approaches for addressing the issues above mentioned in order to facilitate those analyses in terms of the representations.
Contribution:
1. To support the MCS analysis, we propose a matrix-based visualization that allows detailed data of the MCSs of interest to be viewed while maintaining a satisfactory overview of a large number of MCSs for effective navigation and pattern analysis. Engineers can also intuitively analyze the influence of MCSs of a CFT.
2. To facilitate the importance analysis based on the CFT, we propose a hybrid visualization approach that combines the icicle-layout-style architectural views with the CFT structure. This approach facilitates to identify the vulnerable components taking the hierarchies of system architecture into account and investigate the logical failure propagation of the important basic events.
3. We propose a visual safety improvement process that integrates an enhanced decision tree with a scatter plot. This approach allows one to visually investigate the detailed data related to individual steps of the process while maintaining the overview of the process. The approach facilitates to construct and analyze improvement solutions of the safety of a system.
Using our visualization approaches, the MCS analysis, the importance analysis, and the safety improvement process based on the CFT can be facilitated.

The noise issue in manufacturing system is widely discussed from legal and health aspects. Regarding the existing laws and guidelines, various investigation methods are implemented in industry. The sound pressure level can be measured and reduced by using established approaches in reality. However, a straightforward and low cost approach to study noise issue using existing digital factory models is not found.
This thesis attempts to develop a novel concept for sound pressure level investigation in a virtual environment. With this, the factory planners are able to investigate the noise issue during factory design and layout planning phase.
Two computer aided tools are used in this approach: acoustic simulation and virtual reality (VR). The former enables the planner to simulate the sound pressure level by given factory layout and facility sound features. And the latter provides a visualization environment to view and explore the simulation results. The combination of these two powerful tools provides the planners a new possibility to analyze the noise in a factory.
To validate the simulations, the acoustic measurements are implemented in a real factory. Sound pressure level and sound intensity are determined respectively. Furthermore, a software tool is implemented using the introduced concept and approach. With this software, the simulation results are represented in a Cave Automatic Virtual Environment (CAVE).
This thesis describes the development of the approach, the measurement of sound features, the design of visualization framework, and the implementation of VR software. Based on this know-how, the industry users are able to design their own method and software for noise investigation and analysis.

The broad engineering applications of polymers and composites have become the
state of the art due to their numerous advantages over metals and alloys, such as
lightweight, easy processing and manufacturing, as well as acceptable mechanical
properties. However, a general deficiency of thermoplastics is their relatively poor
creep resistance, impairing service durability and safety, which is a significant barrier
to further their potential applications. In recent years, polymer nanocomposites have
been increasingly focused as a novel field in materials science. There are still many
scientific questions concerning these materials leading to the optimal property
combinations. The major task of the current work is to study the improved creep
resistance of thermoplastics filled with various nanoparticles and multi-walled carbon
nanotubes.
A systematic study of three different nanocomposite systems by means of
experimental observation and modeling and prediction was carried out. In the first
part, a nanoparticle/PA system was prepared to undergo creep tests under different
stress levels (20, 30, 40 MPa) at various temperatures (23, 50, 80 °C). The aim was
to understand the effect of different nanoparticles on creep performance. 1 vol. % of
300 nm and 21 nm TiO2 nanoparticles and nanoclay was considered. Surface
modified 21 nm TiO2 particles were also investigated. Static tensile tests were
conducted at those temperatures accordingly. It was found that creep resistance was
significantly enhanced to different degrees by the nanoparticles, without sacrificing
static tensile properties. Creep was characterized by isochronous stress-strain curves,
creep rate, and creep compliance under different temperatures and stress levels.
Orientational hardening, as well as thermally and stress activated processes were
briefly introduced to further understanding of the creep mechanisms of these
nanocomposites. The second material system was PP filled with 1 vol. % 300 nm and 21 nm TiO2
nanoparticles, which was used to obtain more information about the effect of particle
size on creep behavior based on another matrix material with much lower Tg. It was
found especially that small nanoparticles could significantly improve creep resistance.
Additionally, creep lifetime under high stress levels was noticeably extended by
smaller nanoparticles. The improvement in creep resistance was attributed to a very
dense network formed by the small particles that effectively restricted the mobility of
polymer chains. Changes in the spherulite morphology and crystallinity in specimens
before and after creep tests confirmed this explanation.
In the third material system, the objective was to explore the creep behavior of PP
reinforced with multi-walled carbon nanotubes. Short and long aspect ratio nanotubes
with 1 vol. % were used. It was found that nanotubes markedly improved the creep
resistance of the matrix, with reduced creep deformation and rate. In addition, the
creep lifetime of the composites was dramatically extended by 1,000 % at elevated
temperatures. This enhancement contributed to efficient load transfer between
carbon nanotubes and surrounding polymer chains.
Finally, a modeling analysis and prediction of long-term creep behaviors presented a
comprehensive understanding of creep in the materials studied here. Both the
Burgers model and Findley power law were applied to satisfactorily simulate the
experimental data. The parameter analysis based on Burgers model provided an
explanation of structure-to-property relationships. Due to their intrinsic difference, the
power law was more capable of predicting long-term behaviors than Burgers model.
The time-temperature-stress superposition principle was adopted to predict long-term
creep performance based on the short-term experimental data, to make it possible to
forecast the future performance of materials.

Elastomers and their various composites, and blends are frequently used as engineering working parts subjected to rolling friction movements. This fact already substantiates the importance of a study addressing the rolling tribological properties of elastomers and their compounds. It is worth noting that until now the research and development works on the friction and wear of rubber materials were mostly focused on abrasion and to lesser extent on sliding type of loading. As the tribological knowledge acquired with various counterparts, excluding rubbers, can hardly be adopted for those with rubbers, there is a substantial need to study the latter. Therefore, the present work was aimed at investigating the rolling friction and wear properties of different kinds of elastomers against steel under unlubricated condition. In the research the rolling friction and wear properties of various rubber materials were studied in home-made rolling ball-on-plate test configurations under dry condition. The materials inspected were ethylene/propylene/diene rubber (EPDM) without and with carbon black (EPDM_CB), hydrogenated acrylonitrile/butadiene rubber (HNBR) without and with carbon black/silica/multiwall carbon nanotube (HNBR_CB/silica/MWCNT), rubber-rubber hybrid (HNBR and fluororubber (HNBR-FKM)) and rubber-thermoplastic blend (HNBR and cyclic butylene terephthalate oligomers (HNBR-CBT)). The dominant wear mechanisms were investigated by scanning electron microscopy (SEM), and analyzed as a function of composition and testing conditions. Differential scanning calorimetry (DSC), dynamic-mechanical thermal analysis (DMTA), atomic force microscopy (AFM), and transmission electron microscopy (TEM) along with other auxiliary measurements, were adopted to determine the phase structure and network-related properties of the rubber systems. The changes of the friction and wear as a function of type and amount of the additives were explored. The friction process of selected rubbers was also modelled by making use of the finite element method (FEM). The results show that incorporation of filler enhanced generally the wear resistance, hardness, stiffness (storage modulus), and apparent crosslinking of the related rubbers (EPDM-, HNBR- and HNBR-FKM based ones), but did not affect their glass transition temperature. Filling of rubbers usually reduced the coefficient of friction (COF). However, the tribological parameters strongly depended also on the test set-up and test duration. High wear loss was noticed for systems showing the occurrence of Schallamach-type wavy pattern. The blends HNBR-FKM and HNBR-CBT were two-phase structured. In HNBR-FKM, the FKM was dispersed in form of large microscaled domains in the HNBR matrix. This phase structure did not change by incorporation of MWCNT. It was established that the MWCNT was preferentially embedded in the HNBR matrix. Blending HNBR with FKM reduced the stiffness and degree of apparent crosslinking of the blend, which was traced to the dilution of the cure recipe with FKM. The coefficient of friction increased with increasing FKM opposed to the expectation. On the other hand, the specific wear rate (Ws) changed marginally with increasing content of FKM. In HNBR-CBT hybrids the HNBR was the matrix, irrespective to the rather high CBT content. Both the partly and mostly polymerized CBT ((p)CBT and pCBT, respectively) in the hybrids worked as active filler and thus increased the stiffness and hardness. The COF and Ws decreased with increasing CBT content. The FEM results in respect to COF achieved on systems possessing very different structures and thus properties (EPDM_30CB, HNBR-FKM 100-100 and HNBR-(p)CBT 100-100, respectively) were in accordance with the experimental results. This verifies that FEM can be properly used to consider the complex viscoelastic behaviour of rubber materials under dry rolling condition.

The objective of this thesis consists in developing systematic event-triggered control designs for specified event generators, which is an important alternative to the traditional periodic sampling control. Sporadic sampling inherently arising in event-triggered control is determined by the event-triggering conditions. This feature invokes the desire of
finding new control theory as the traditional sampled-data theory in computer control.
Developing controller coupling with the applied event-triggering condition to maximize the control performance is the essence for event-triggered control design. In the design the stability of the control system needs to be ensured with the first priority. Concerning variant control aims they should be clearly incorporated in the design procedures. Considering applications in embedded control systems efficient implementation requires a low complexity of embedded software architectures. The thesis targets at offering such a design to further complete the theory of event-triggered control designs.

Modern digital imaging technologies, such as digital microscopy or micro-computed tomography, deliver such large amounts of 2D and 3D-image data that manual processing becomes infeasible. This leads to a need for robust, flexible and automatic image analysis tools in areas such as histology or materials science, where microstructures are being investigated (e.g. cells, fiber systems). General-purpose image processing methods can be used to analyze such microstructures. These methods usually rely on segmentation, i.e., a separation of areas of interest in digital images. As image segmentation algorithms rarely adapt well to changes in the imaging system or to different analysis problems, there is a demand for solutions that can easily be modified to analyze different microstructures, and that are more accurate than existing ones. To address these challenges, this thesis contributes a novel statistical model for objects in images and novel algorithms for the image-based analysis of microstructures. The first contribution is a novel statistical model for the locations of objects (e.g. tumor cells) in images. This model is fully trainable and can therefore be easily adapted to many different image analysis tasks, which is demonstrated by examples from histology and materials science. Using algorithms for fitting this statistical model to images results in a method for locating multiple objects in images that is more accurate and more robust to noise and background clutter than standard methods. On simulated data at high noise levels (peak signal-to-noise ratio below 10 dB), this method achieves detection rates up to 10% above those of a watershed-based alternative algorithm. While objects like tumor cells can be described well by their coordinates in the plane, the analysis of fiber systems in composite materials, for instance, requires a fully three dimensional treatment. Therefore, the second contribution of this thesis is a novel algorithm to determine the local fiber orientation in micro-tomographic reconstructions of fiber-reinforced polymers and other fibrous materials. Using simulated data, it will be demonstrated that the local orientations obtained from this novel method are more robust to noise and fiber overlap than those computed using an established alternative gradient-based algorithm, both in 2D and 3D. The property of robustness to noise of the proposed algorithm can be explained by the fact that a low-pass filter is used to detect local orientations. But even in the absence of noise, depending on fiber curvature and density, the average local 3D-orientation estimate can be about 9° more accurate compared to that alternative gradient-based method. Implementations of that novel orientation estimation method require repeated image filtering using anisotropic Gaussian convolution filters. These filter operations, which other authors have used for adaptive image smoothing, are computationally expensive when using standard implementations. Therefore, the third contribution of this thesis is a novel optimal non-orthogonal separation of the anisotropic Gaussian convolution kernel. This result generalizes a previous one reported elsewhere, and allows for efficient implementations of the corresponding convolution operation in any dimension. In 2D and 3D, these implementations achieve an average performance gain by factors of 3.8 and 3.5, respectively, compared to a fast Fourier transform-based implementation. The contributions made by this thesis represent improvements over state-of-the-art methods, especially in the 2D-analysis of cells in histological resections, and in the 2D and 3D-analysis of fibrous materials.

The thesis at hand deals with the numerical solution of multiscale problems arising in the modeling of processes in fluid and thermo dynamics. Many of these processes, governed by partial differential equations, are relevant in engineering, geoscience, and environmental studies. More precisely, this thesis discusses the efficient numerical computation of effective macroscopic thermal conductivity tensors of high-contrast composite materials. The term "high-contrast" refers to large variations in the conductivities of the constituents of the composite. Additionally, this thesis deals with the numerical solution of Brinkman's equations. This system of equations adequately models viscous flows in (highly) permeable media. It was introduced by Brinkman in 1947 to reduce the deviations between the measurements for flows in such media and the predictions according to Darcy's model.

Most of today’s wireless communication devices operate on unlicensed bands with uncoordinated spectrum access, with the consequence that RF interference and collisions are impairing the overall performance of wireless networks. In the classical design of network protocols, both packets in a collision are considered lost, such that channel access mechanisms attempt to avoid collisions proactively. However, with the current proliferation of wireless applications, e.g., WLANs, car-to-car networks, or the Internet of Things, this conservative approach is increasingly limiting the achievable network performance in practice. Instead of shunning interference, this thesis questions the notion of „harmful“ interference and argues that interference can, when generated in a controlled manner, be used to increase the performance and security of wireless systems. Using results from information theory and communications engineering, we identify the causes for reception or loss of packets and apply these insights to design system architectures that benefit from interference. Because the effect of signal propagation and channel fading, receiver design and implementation, and higher layer interactions on reception performance is complex and hard to reproduce by simulations, we design and implement an experimental platform for controlled interference generation to strengthen our theoretical findings with experimental results. Following this philosophy, we introduce and evaluate a system architecture that leverage interference.
First, we identify the conditions for successful reception of concurrent transmissions in wireless networks. We focus on the inherent ability of angular modulation receivers to reject interference when the power difference of the colliding signals is sufficiently large, the so-called capture effect. Because signal power fades over distance, the capture effect enables two or more sender–receiver pairs to transmit concurrently if they are positioned appropriately, in turn boosting network performance. Second, we show how to increase the security of wireless networks with a centralized network access control system (called WiFire) that selectively interferes with packets that violate a local security policy, thus effectively protecting legitimate devices from receiving such packets. WiFire’s working principle is as follows: a small number of specialized infrastructure devices, the guardians, are distributed alongside a network and continuously monitor all packet transmissions in the proximity, demodulating them iteratively. This enables the guardians to access the packet’s content before the packet fully arrives at the receiver. Using this knowledge the guardians classify the packet according to a programmable security policy. If a packet is deemed malicious, e.g., because its header fields indicate an unknown client, one or more guardians emit a limited burst of interference targeting the end of the packet, with the objective to introduce bit errors into it. Established communication standards use frame check sequences to ensure that packets are received correctly; WiFire leverages this built-in behavior to prevent a receiver from processing a harmful packet at all. This paradigm of „over-the-air“ protection without requiring any prior modification of client devices enables novel security services such as the protection of devices that cannot defend themselves because their performance limitations prohibit the use of complex cryptographic protocols, or of devices that cannot be altered after deployment.
This thesis makes several contributions. We introduce the first software-defined radio based experimental platform that is able to generate selective interference with the timing precision needed to evaluate the novel architectures developed in this thesis. It implements a real-time receiver for IEEE 802.15.4, giving it the ability to react to packets in a channel-aware way. Extending this system design and implementation, we introduce a security architecture that enables a remote protection of wireless clients, the wireless firewall. We augment our system with a rule checker (similar in design to Netfilter) to enable rule-based selective interference. We analyze the security properties of this architecture using physical layer modeling and validate our analysis with experiments in diverse environmental settings. Finally, we perform an analysis of concurrent transmissions. We introduce a new model that captures the physical properties correctly and show its validity with experiments, improving the state of the art in the design and analysis of cross-layer protocols for wireless networks.

Dual-Pivot Quicksort and Beyond: Analysis of Multiway Partitioning and Its Practical Potential
(2016)

Multiway Quicksort, i.e., partitioning the input in one step around several pivots, has received much attention since Java 7’s runtime library uses a new dual-pivot method that outperforms by far the old Quicksort implementation. The success of dual-pivot Quicksort is most likely due to more efficient usage of the memory hierarchy, which gives reason to believe that further improvements are possible with multiway Quicksort.
In this dissertation, I conduct a mathematical average-case analysis of multiway Quicksort including the important optimization to choose pivots from a sample of the input. I propose a parametric template algorithm that covers all practically relevant partitioning methods as special cases, and analyze this method in full generality. This allows me to analytically investigate in depth what effect the parameters of the generic Quicksort have on its performance. To model the memory-hierarchy costs, I also analyze the expected number of scanned elements, a measure for the amount of data transferred from memory that is known to also approximate the number of cache misses very well. The analysis unifies previous analyses of particular Quicksort variants under particular cost measures in one generic framework.
A main result is that multiway partitioning can reduce the number of scanned elements significantly, while it does not save many key comparisons; this explains why the earlier studies of multiway Quicksort did not find it promising. A highlight of this dissertation is the extension of the analysis to inputs with equal keys. I give the first analysis of Quicksort with pivot sampling and multiway partitioning on an input model with equal keys.

In the first part of the thesis we develop the theory of standard bases in free modules over (localized) polynomial rings. Given that linear equations are solvable in the coefficients of the polynomials, we introduce an algorithm to compute standard bases with respect to arbitrary (module) monomial orderings. Moreover, we take special care to principal ideal rings, allowing zero divisors. For these rings we design modified algorithms which are new and much faster than the general ones. These algorithms were motivated by current limitations in formal verification of microelectronic System-on-Chip designs. We show that our novel approach using computational algebra is able to overcome these limitations in important classes of applications coming from industrial challenges.
The second part is based on research in collaboration with Jason Morton, Bernd Sturmfels and Anne Shiu. We devise a general method to describe and compute a certain class of rank tests motivated by statistics. The class of rank tests may loosely be described as being based on computing the number of linear extensions to given partial orders. In order to apply these tests to actual data we developed two algorithms and used our implementations to apply the methodology to gene expression data created at the Stowers Institute for Medical Research. The dataset is concerned with the development of the vertebra. Our rankings proved valuable to the biologists.

In the presented work, I evaluate if and how Virtual Reality (VR) technologies can be used to support researchers working in the geosciences by providing immersive, collaborative visualization systems as well as virtual tools for data analysis. Technical challenges encountered in the development of theses systems are identified and solutions for these are provided.
To enable geologists to explore large digital terrain models (DTMs) in an immersive, explorative fashion within a VR environment, a suitable terrain rendering algorithm is required. For realistic perception of planetary curvature at large viewer altitudes, spherical rendering of the surface is necessary. Furthermore, rendering must sustain interactive frame rates of about 30 frames per second to avoid sensory confusion of the user. At the same time, the data structures used for visualization should also be suitable for efficiently computing spatial properties such as height profiles or volumes in order to implement virtual analysis tools. To address these requirements, I have developed a novel terrain rendering algorithm based on tiled quadtree hierarchies using the HEALPix parametrization of a sphere. For evaluation purposes, the system is applied to a 500 GiB dataset representing the surface of Mars.
Considering the current development of inexpensive remote surveillance equipment such as quadcopters, it seems inevitable that these devices will play a major role in future disaster management applications. Virtual reality installations in disaster management headquarters which provide an immersive visualization of near-live, three-dimensional situational data could then be a valuable asset for rapid, collaborative decision making. Most terrain visualization algorithms, however, require a computationally expensive pre-processing step to construct a terrain database.
To address this problem, I present an on-the-fly pre-processing system for cartographic data. The system consists of a frontend for rendering and interaction as well as a distributed processing backend executing on a small cluster which produces tiled data in the format required by the frontend on demand. The backend employs a CUDA based algorithm on graphics cards to perform efficient conversion from cartographic standard projections to the HEALPix-based grid used by the frontend.
Measurement of spatial properties is an important step in quantifying geological phenomena. When performing these tasks in a VR environment, a suitable input device and abstraction for the interaction (a “virtual tool”) must be provided. This tool should enable the user to precisely select the location of the measurement even under a perspective projection. Furthermore, the measurement process should be accurate to the resolution of the data available and should not have a large impact on the frame rate in order to not violate interactivity requirements.
I have implemented virtual tools based on the HEALPix data structure for measurement of height profiles as well as volumes. For interaction, a ray-based picking metaphor was employed, using a virtual selection ray extending from the user’s hand holding a VR interaction device. To provide maximum accuracy, the algorithms access the quad-tree terrain database at the highest available resolution level while at the same time maintaining interactivity in rendering.
Geological faults are cracks in the earth’s crust along which a differential movement of rock volumes can be observed. Quantifying the direction and magnitude of such translations is an essential requirement in understanding earth’s geological history. For this purpose, geologists traditionally use maps in top-down projection which are cut (e.g. using image editing software) along the suspected fault trace. The two resulting pieces of the map are then translated in parallel against each other until surface features which have been cut by the fault motion come back into alignment. The amount of translation applied is then used as a hypothesis for the magnitude of the fault action. In the scope of this work it is shown, however, that performing this study in a top-down perspective can lead to the acceptance of faulty reconstructions, since the three-dimensional structure of topography is not considered.
To address this problem, I present a novel terrain deformation algorithm which allows the user to trace a fault line directly within a 3D terrain visualization system and interactively deform the terrain model while inspecting the resulting reconstruction from arbitrary perspectives. I demonstrate that the application of 3D visualization allows for a more informed interpretation of fault reconstruction hypotheses. The algorithm is implemented on graphics cards and performs real-time geometric deformation of the terrain model, guaranteeing interactivity with respect to all parameters.
Paleoceanography is the study of the prehistoric evolution of the ocean. One of the key data sources used in this research are coring experiments which provide point samples of layered sediment depositions at the ocean floor. The samples obtained in these experiments document the time-varying sediment concentrations within the ocean water at the point of measurement. The task of recovering the ocean flow patterns based on these deposition records is a challenging inverse numerical problem, however.
To support domain scientists working on this problem, I have developed a VR visualization tool to aid in the verification of model parameters by providing simultaneous visualization of experimental data from coring as well as the resulting predicted flow field obtained from numerical simulation. Earth is visualized as a globe in the VR environment with coring data being presented using a billboard rendering technique while the
time-variant flow field is indicated using Line-Integral-Convolution (LIC). To study individual sediment transport pathways and their correlation with the depositional record, interactive particle injection and real-time advection is supported.

In this dissertation we consider complex, projective hypersurfaces with many isolated singularities. The leading questions concern the maximal number of prescribed singularities of such hypersurfaces in a given linear system, and geometric properties of the equisingular stratum. In the first part a systematic introduction to the theory of equianalytic families of hypersurfaces is given. Furthermore, the patchworking method for constructing hypersurfaces with singularities of prescribed types is described. In the second part we present new existence results for hypersurfaces with many singularities. Using the patchworking method, we show asymptotically proper results for hypersurfaces in P^n with singularities of corank less than two. In the case of simple singularities, the results are even asymptotically optimal. These statements improve all previous general existence results for hypersurfaces with these singularities. Moreover, the results are also transferred to hypersurfaces defined over the real numbers. The last part of the dissertation deals with the Castelnuovo function for studying the cohomology of ideal sheaves of zero-dimensional schemes. Parts of the theory of this function for schemes in P^2 are generalized to the case of schemes on general surfaces in P^3. As an application we show an H^1-vanishing theorem for such schemes.

Accurate path tracking control of tractors became a key technology for automation in agriculture. Increasingly sophisticated solutions, however, revealed that accurate path tracking control of implements is at least equally important. Therefore, this work focuses on accurate path tracking control of both tractors and implements. The latter, as a prerequisite for improved control, are equipped with steering actuators like steerable wheels or a steerable drawbar, i.e. the implements are actively steered. This work contributes both new plant models and new control approaches for those kinds of tractor-implement combinations. Plant models comprise dynamic vehicle models accounting for forces and moments causing the vehicle motion as well as simplified kinematic descriptions. All models have been derived in a systematic and automated manner to allow for variants of implements and actuator combinations. Path tracking controller design begins with a comprehensive overview and discussion of existing approaches in related domains. Two new approaches have been proposed combining the systematic setup and tuning of a Linear-Quadratic-Regulator with the simplicity of a static output feedback approximation. The first approach ensures accurate path tracking on slopes and curves by including integral control for a selection of controlled variables. The second approach, instead, ensures this by adding disturbance feedforward control based on side-slip estimation using a non-linear kinematic plant model and an Extended Kalman Filter. For both approaches a feedforward control approach for curved path tracking has been newly derived. In addition, a straightforward extension of control accounting for the implement orientation has been developed. All control approaches have been validated in simulations and experiments carried out with a mid-size tractor and a custom built demonstrator implement.

Crowd condition monitoring concerns the crowd safety and concerns business performance metrics. The research problem to be solved is a crowd condition estimation approach to enable and support the supervision of mass events by first-responders and marketing experts, but is also targeted towards supporting social scientists, journalists, historians, public relations experts, community leaders, and political researchers. Real-time insights of the crowd condition is desired for quick reactions and historic crowd conditions measurements are desired for profound post-event crowd condition analysis.
This thesis aims to provide a systematic understanding of different approaches for crowd condition estimation by relying on 2.4 GHz signals and its variation in crowds of people, proposes and categorizes possible sensing approaches, applies supervised machine learning algorithms, and demonstrates experimental evaluation results. I categorize four sensing approaches. Firstly, stationary sensors which are sensing crowd centric signals sources. Secondly, stationary sensors which are sensing other stationary signals sources (either opportunistic or special purpose signal sources). Thirdly, a few volunteers within the crowd equipped with sensors which are sensing other surrounding crowd centric device signals (either individually, in a single group or collaboratively) within a small region. Fourthly, a small subset of participants within the crowd equipped with sensors and roaming throughout a whole city to sense wireless crowd centric signals.
I present and evaluate an approach with meshed stationary sensors which were sensing crowd centric devices. This was demonstrated and empirically evaluated within an industrial project during three of the world-wide largest automotive exhibitions. With over 30 meshed stationary sensors in an optimized setup across 6400m2 I achieved a mean absolute error of the crowd density of just 0.0115
people per square meter which equals to an average of below 6% mean relative error from the ground truth. I validate the contextual crowd condition anomaly detection method during the visit of chancellor Mrs. Merkel and during a large press conference during the exhibition. I present the approach of opportunistically sensing stationary based wireless signal variations and validate this during the Hannover CeBIT exhibition with 80 opportunistic sources with a crowd condition estimation relative error of below 12% relying only on surrounding signals in influenced by humans. Pursuing this approach I present an approach with dedicated signal sources and sensors to estimate the condition of shared office environments. I demonstrate methods being viable to even detect low density static crowds, such as people sitting at their desks, and evaluate this on an eight person office scenario. I present the approach of mobile crowd density estimation by a group of sensors detecting other crowd centric devices in the proximity with a classification accuracy of the crowd density of 66 % (improvement of over 22% over a individual sensor) during the crowded Oktoberfest event. I propose a collaborative mobile sensing approach which makes the system more robust against variations that may result from the background of the people rather than the crowd condition with differential features taking information about the link structure between actively scanning devices, the ratio between values observed by different devices, ratio of discovered crowd devices over time, team-wise diversity of discovered devices, number of semi- continuous device visibility periods, and device visibility durations into account. I validate the approach on multiple experiments including the Kaiserslautern European soccer championship public viewing event and evaluated the collaborative mobile sensing approach with a crowd condition estimation accuracy of 77 % while outperforming previous methods by 21%. I present the feasibility of deploying the wireless crowd condition sensing approach to a citywide scale during an event in Zurich with 971 actively sensing participants and outperformed the reference method by 24% in average.

The present work investigated three important constructs in the field of psychology: creativity, intelligence and giftedness. The major objective was to clarify some aspects about each one of these three constructs, as well as some possible correlations between them. Of special interest were: (1) the relationship between creativity and intelligence - particularly the validity of the threshold theory; (2) the development of these constructs within average and above-average intelligent children and throughout grade levels; and (3) the comparison between the development of intelligence and creativity in above-average intelligent primary school children that participated in a special program for children classified as “gifted”, called Entdeckertag (ET), against an age-class- and-IQ matched control group. The ET is a pilot program which was implemented in 2004 by the Ministry for Education, Science, Youth and Culture of the state of Rhineland-Palatinate, Germany. The central goals of this program are the early recognition of gifted children and intervention, based on the areas of German language, general science and mathematics, and also to foster the development of a child’s creativity, social ability, and more. Five hypotheses were proposed and analyzed, and reported separately within five chapters. To analyze these hypotheses, a sample of 217 children recruited from first to fourth grade, and between the ages of six and ten years, was tested for intelligence and creativity. Children performed three tests: Standard Progressive Matrices (SPM) for the assessment of classical intelligence, Test of Creative Thinking – Drawing Production (TCT-DP) for the measurement of classical creativity, and Creative Reasoning Task (CRT) for the evaluation of convergent and divergent thinking, both in open problem spaces. Participants were divided according to two general cohorts: Intervention group (N = 43), composed of children participating in the Entdeckertag program, and a non-intervention group (N = 174), composed of children from the regular primary school. For the testing of the hypotheses, children were placed into more specific groups according to the particular hypothesis that was being tested. It could be concluded that creativity and intelligence were not significantly related and the threshold theory was not confirmed. Additionally, intelligence accounted for less than 1% of the variance within creativity; moreover, scores on intelligence were unable to predict later creativity scores. The development of classical intelligence and classical creativity throughout grade levels also presented a different pattern; intelligence grew increasingly and continually, whereas creativity stagnated after the third grade. Finally, the ET program proved to be beneficial for classical intelligence after two years of attendance, but no effect was found for creativity. Overall, results indicate that organizations and institutions such as schools should not look solely to intelligence performance, especially when aiming to identify and foster gifted or creative individuals.

Backward compatibility of class libraries ensures that an old implementation of a library can safely be replaced by a new implementation without breaking existing clients.
Formal reasoning about backward compatibility requires an adequate semantic model to compare the behavior of two library implementations.
In the object-oriented setting with inheritance and callbacks, finding such models is difficult as the interface between library implementations and clients are complex.
Furthermore, handling these models in a way to support practical reasoning requires appropriate verification tools.
This thesis proposes a formal model for library implementations and a reasoning approach for backward compatibility that is implemented using an automatic verifier. The first part of the thesis develops a fully abstract trace-based semantics for class libraries of a core sequential object-oriented language. Traces abstract from the control flow (stack) and data representation (heap) of the library implementations. The construction of a most general context is given that abstracts exactly from all possible clients of the library implementation.
Soundness and completeness of the trace semantics as well as the most general context are proven using specialized simulation relations on the operational semantics. The simulation relations also provide a proof method for reasoning about backward compatibility.
The second part of the thesis presents the implementation of the simulation-based proof method for an automatic verifier to check backward compatibility of class libraries written in Java. The approach works for complex library implementations, with recursion and loops, in the setting of unknown program contexts. The verification process relies on a coupling invariant that describes a relation between programs that use the old library implementation and programs that use the new library implementation. The thesis presents a specification language to formulate such coupling invariants. Finally, an application of the developed theory and tool to typical examples from the literature validates the reasoning and verification approach.

For many decades, the search for language classes that extend the
context-free laguages enough to include various languages that arise in
practice, while still keeping as many of the useful properties that
context-free grammars have - most notably cubic parsing time - has been
one of the major areas of research in formal language theory. In this thesis
we add a new family of classes to this field, namely
position-and-length-dependent context-free grammars. Our classes use the
approach of regulated rewriting, where derivations in a context-free base
grammar are allowed or forbidden based on, e.g., the sequence of rules used
in a derivation or the sentential forms, each rule is applied to. For our
new classes we look at the yield of each rule application, i.e. the
subword of the final word that eventually is derived from the symbols
introduced by the rule application. The position and length of the yield
in the final word define the position and length of the rule application and
each rule is associated a set of positions and lengths where it is allowed
to be applied.
We show that - unless the sets of allowed positions and lengths are really
complex - the languages in our classes can be parsed in the same time as
context-free grammars, using slight adaptations of well-known parsing
algorithms. We also show that they form a proper hierarchy above the
context-free languages and examine their relation to language classes
defined by other types of regulated rewriting.
We complete the treatment of the language classes by introducing pushdown
automata with position counter, an extension of traditional pushdown
automata that recognizes the languages generated by
position-and-length-dependent context-free grammars, and we examine various
closure and decidability properties of our classes. Additionally, we gather
the corresponding results for the subclasses that use right-linear resp.
left-linear base grammars and the corresponding class of automata, finite
automata with position counter.
Finally, as an application of our idea, we introduce length-dependent
stochastic context-free grammars and show how they can be employed to
improve the quality of predictions for RNA secondary structures.

In this thesis we present a new method for nonlinear frequency response analysis of mechanical vibrations.
For an efficient spatial discretization of nonlinear partial differential equations of continuum mechanics we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of exact geometry representation and higher accuracy of numerical approximations using spline functions.
For computing nonlinear frequency response to periodic external excitations, we rely on the well-established harmonic balance method. It expands the solution of the nonlinear ordinary differential equation system resulting from spatial discretization as a truncated Fourier series in the frequency domain.
A fundamental aspect for enabling large-scale and industrial application of the method is model order reduction of the spatial discretization of the equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. We investigate the concept of modal derivatives theoretically and using computational examples we demonstrate the applicability and accuracy of the reduction method for nonlinear static computations and vibration analysis.
Furthermore, we extend nonlinear vibration analysis to incompressible elasticity using isogeometric mixed finite element methods.

Utilization of Correlation Matrices in Adaptive Array Processors for Time-Slotted CDMA Uplinks
(2002)

It is well known that the performance of mobile radio systems can be significantly enhanced by the application of adaptive antennas which consist of multi-element antenna arrays plus signal processing circuitry. In the thesis the utilization of such antennas as receive antennas in the uplink of mobile radio air interfaces of the type TD-CDMA is studied. Especially, the incorporation of covariance matrices of the received interference signals into the signal processing algorithms is investigated with a view to improve the system performance as compared to state of the art adaptive antenna technology. These covariance matrices implicitly contain information on the directions of incidence of the interference signals, and this information may be exploited to reduce the effective interference power when processing the signals received by the array elements. As a basis for the investigations, first directional models of the mobile radio channels and of the interference impinging at the receiver are developed, which can be implemented on the computer at low cost. These channel models cover both outdoor and indoor environments. They are partly based on measured channel impulse responses and, therefore, allow a description of the mobile radio channels which comes sufficiently close to reality. Concerning the interference models, two cases are considered. In the one case, the interference signals arriving from different directions are correlated, and in the other case these signals are uncorrelated. After a visualization of the potential of adaptive receive antennas, data detection and channel estimation schemes for the TD-CDMA uplink are presented, which rely on such antennas under the consideration of interference covariance matrices. Of special interest is the detection scheme MSJD (Multi Step Joint Detection), which is a novel iterative approach to multi-user detection. Concerning channel estimation, the incorporation of the knowledge of the interference covariance matrix and of the correlation matrix of the channel impulse responses is enabled by an MMSE (Minimum Mean Square Error) based channel estimator. The presented signal processing concepts using covariance matrices for channel estimation and data detection are merged in order to form entire receiver structures. Important tasks to be fulfilled in such receivers are the estimation of the interference covariance matrices and the reconstruction of the received desired signals. These reconstructions are required when applying MSJD in data detection. The considered receiver structures are implemented on the computer in order to enable system simulations. The obtained simulation results show that the developed schemes are very promising in cases, where the impinging interference is highly directional, whereas in cases with the interference directions being more homogeneously distributed over the azimuth the consideration of the interference covariance matrices is of only limited benefit. The thesis can serve as a basis for practical system implementations.

Today, polygonal models occur everywhere in graphical applications, since they are easy
to render and to compute and a very huge set of tools are existing for generation and
manipulation of polygonal data. But modern scanning devices that allow a high quality
and large scale acquisition of complex real world models often deliver a large set of
points as resulting data structure of the scanned surface. A direct triangulation of those
point clouds does not always result in good models. They often contain problems like
holes, self-intersections and non manifold structures. Also one often looses important
surface structures like sharp corners and edges during a usual surface reconstruction.
So it is suitable to stay a little longer in the point based world to analyze the point cloud
data with respect to such features and apply a surface reconstruction method afterwards
that is known to construct continuous and smooth surfaces and extend it to reconstruct
sharp features.

Software is becoming increasingly concurrent: parallelization, decentralization, and reactivity necessitate asynchronous programming in which processes communicate by posting messages/tasks to others’ message/task buffers. Asynchronous programming has been widely used to build fast servers and routers, embedded systems and sensor networks, and is the basis of Web programming using Javascript. Languages such as Erlang and Scala have adopted asynchronous programming as a fundamental concept with which highly scalable and highly reliable distributed systems are built.
Asynchronous programs are challenging to implement correctly: the loose coupling between asynchronously executed tasks makes the control and data dependencies difficult to follow. Even subtle design and programming mistakes on the programs have the capability to introduce erroneous or divergent behaviors. As asynchronous programs are typically written to provide a reliable, high-performance infrastructure, there is a critical need for analysis techniques to guarantee their correctness.
In this dissertation, I provide scalable verification and testing tools to make asyn- chronous programs more reliable. I show that the combination of counter abstraction and partial order reduction is an effective approach for the verification of asynchronous systems by presenting PROVKEEPER and KUAI, two scalable verifiers for two types of asynchronous systems. I also provide a theoretical result that proves a counter-abstraction based algorithm called expand-enlarge-check, is an asymptotically optimal algorithm for the coverability problem of branching vector addition systems as which many asynchronous programs can be modeled. In addition, I present BBS and LLSPLAT, two testing tools for asynchronous programs that efficiently uncover many subtle memory violation bugs.

The present PhD thesis is mainly focused on synthesis, characterization and catalytic application of functionalized triphenylphosphine (TPP) ligands and their complexes. We developed a simple and effective strategy to immobilize TPP: A methylester group attached to one of the phenyl rings of TPP allowes the derivatization of the ligand with 3-trimethoxysilylpropylamine, a typical silane coupling agent used for the covalent immobilization of organic compounds on silica surfaces. The resulting functionalized TPP was further coordinated to Pd, Rh and Ru precursors to achieve homogeneous complexes which can be tethered on silica by the post synthetic grafting method and co-condensation method. The obtained heterogeneous catalysts exhibited excellent activity, selectivity and reusability in Suzuki, hydrogenation and transfer hydrogenation reactions. In order to investigate the stability of the catalysts, different types of characterizations such as TEM, solid state NMR of the used catalysts as well as AAS of filtrate and leaching tests were carried out. The results prove the practicability and efficiency of our method. This strategy was further modified to generate an anionic side chain linked to the TPP core by simply replacing the trimethoxysilylpropylamine group by sodium(3-amino- 1-propanesulfonate), which allowes the immobilization on imidazolium modified SBA-15 through electrostatic interaction. The obtained material was further reacted with PdCl2(CNPh)2 and the resulting hybrid material was used for the hydrogenation of olefins allowing mild reaction conditions. The catalyst shows excellent activity, selectivity and stability and it can furthermore be reused for at least ten times without any loss of activity. TEM images of the used catalyst clearly show the absence of palladium nanoparticles, proving the high stability of the palladium compound. By AAS no palladium could be detected in the products and further leaching tests very- fied the reaction to be truly heterogeneous. This concept of non-covalent immobili- zation guarantees a tight bonding of the catalytically active species to the surface in combination with a high mobility, which should be favorable for other catalyses.

The work presented in this thesis discusses the thermal and power management of multi-core processors (MCPs) with both two dimensional (2D) package and there dimensional (3D) package chips. The power and thermal management/balancing is of increasing concern and is a technological challenge to the MCP development and will be a main performance bottleneck for the development of MCPs. This thesis develops optimal thermal and power management policies for MCPs. The system thermal behavior for both 2D package and 3D package chips is analyzed and mathematical models are developed. Thereafter, the optimal thermal and power management methods are introduced.
Nowadays, the chips are generally packed in 2D technique, which means that there is only one layer of dies in the chip. The chip thermal behavior can be described by a 3D heat conduction partial differential equation (PDE). As the target is to balance the thermal behavior and power consumption among the cores, a group of one dimensional (1D) PDEs, which is derived from the developed 3D PDE heat conduction equation, is proposed to describe the thermal behavior of each core. Therefore, the thermal behavior of the MCP is described by a group of 1D PDEs. An optimal controller is designed to manage the power consumption and balance the temperature among the cores based on the proposed 1D model.
3D package is an advanced package technology, which contains at least 2 layers of dies stacked in one chip. Different from 2D package, the cooling system should be installed among the layers to reduce the internal temperature of the chip. In this thesis, the micro-channel liquid cooling system is considered, and the heat transfer character of the micro-channel is analyzed and modeled as an ordinary differential equation (ODE). The dies are discretized to blocks based on the chip layout with each block modeled as a thermal resistance and capacitance (R-C) circuit. Thereafter, the micro-channels are discretized. The thermal behavior of the whole system is modeled as an ODE system. The micro-channel liquid velocity is set according to the workload and the temperature of the dies. Under each velocity, the system can be described as a linear ODE model system and the whole system is a switched linear system. An H-infinity observer is designed to estimate the states. The model predictive control (MPC) method is employed to design the thermal and power management/balancing controller for each submodel.
The models and controllers developed in this thesis are verified by simulation experiments via MATLAB. The IBM cell 8 cores processor and water micro-channel cooling system developed by IBM Research in collaboration with EPFL and ETHZ are employed as the experiment objects.

In the present work, the phase transitions in different Fe/FeC systems were studied by using the molecular dynamics simulation and the Meyer-Entel interaction potential (also the Johnson potential for Fe-C interaction). Fe-bicrystal, thin film, Fe-C bulk and Fe-C nanowire systems were investigated to study the behaviour of the phase transition, where the energetics, dynamics and transformations pathways were analysed.

Sterisch anspruchsvolle Cyclopentadienyl-Liganden wurden zur Stabilisierung neuer Mono(cyclopentadienyl) Verbindungen der schweren Erdalkalimetalle eingesetzt und deren Funktionalisierbarkeit dieser Spezies wurde exemplarisch durch die Synthese neutraler Tripeldecker-Sandwichkomplexe demonstriert. Die dabei ausgebildeten Molekülstrukturen lassen sich mittels DFT-Rechnungen zuverlässig vorhersagen. In diesem Zusammenhang wurde ebenfalls der Cyclononatetraenyl-Ligand, dessen Komplexeigenschaften bisher nur unzureichend untersucht wurden, eingesetzt. Im Rahmen dieser Arbeit gelang die Synthese des Bis(cyclononatetraenyl)bariums, Ba(C9H9)2, und dessen spektroskopische Charakterisierung. DFT-Rechnungen sagen für diesen Komplex eine Metallocenstruktur mit nahezu parallelen Ringen und einem Ba-Ring Abstand von 2.37 Å voraus. Durch den Einsatz des Tetraisopropylcyclopentadienyl (4Cp) und Tri(tert.-butyl)cyclopentadienyl (Cp’)-Liganden gelang die Synthese von Bis- und Monocyclopentadienyl-Verbindungen der frühen und späten Lanthanoide. Besonders interessant in diesem Zusammenhang ist die erfolgreiche Darstellung des Azido-Clusters, [Na(dme)3]2[4Cp6Yb6(N3)14] (4Cp= (Me2CH)4C5H), der die unterschiedlichen Koordinationsmöglichkeiten des Azido-Liganden in einem einzigen Komplex vereint. Vergleichbare Komplexe waren in der Organolanthanoidchemie bisher unbekannt. Durch Substitution am Cyclopentadienyl-System lassen sich dessen elektronische und sterische Eigenschaften signifikant verändern. Die Auswirkungen dieser Effekte können sehr eindrucksvoll an Manganocen-Komplexen demonstriert werden, in denen sich der low- und high-spin Zustand energetisch nur sehr wenig unterscheiden. Der elektronische Grundzustand einer Reihe unterschiedlich substituierter Manganocen-Komplexe wurde mittels Festkörpermagnetismus, ESR, Röntgenstrukturanalyse, EXAFS und variabler Temperatur UV-Vis Spektroskopie bestimmt, und mit dem Substitutionsmuster am Cyclopentadienyl-System korreliert. Spin-Gleichgewichte ließen sich für [(Me3C)C5H4]2Mn, [(Me3C)2C5H3]2Mn und [(Me3C)(Me3Si)C5H3]2Mn nachweisen. Theoretische Rechnungen postulieren, dass Cerocen, Ce(C8H8)2, ein Beispiel für Moleküle mit gemischt-konfiguriertem Grundzustand sei, der durch 80 % [(Ce)f1e2u(cot)e2u3] und 20 % [(Ce)f0e2u(cot)e2u4] beschreiben werden könne. Obwohl dieses Molekül bereits seit 1976 bekannt ist, ist dessen elektronische Struktur bis heute sehr umstritten. Im Rahmen dieser Arbeit wurden neue Synthesekonzepte für diese Verbindung entwickelt und die elektronische Struktur mittels magnetischer Messungen im Festkörper, EXAFS und XANES Studien untersucht. Die dabei erhaltenen Daten sind in sehr guter Übereinstimmung mit den theoretischen Rechnungen und belegen die Bedeutung eines gemischt-konfigurierten Grundzustandes bei der Bindung in Organometallkomplexen der f-Block Metalle. Während in Cerocen nur ein temperaturunabhängiger Paramagnetismus (TIP) beobachtet werden kann, findet man eine starke Temperaturabhängigkeit der magnetischen Suszeptibilität in Ytterbium Systemen des Typs Cp’2Yb(bipy’) [Cp´ und bipy´ sind substituierte Cyclopentadienyl- oder 4,4’-substituierter 2,2’-Bipyridyl-Liganden]. Temperaturabhängige XANES-Experimenten belegen, dass auch in diesen Systemen ein gemischt-konfigurierter Grundzustand vorliegt, der durch [(Yb)f14(bipy)b1()0] und [(Yb)f13(bipy)b1()1] beschreiben werden kann. Der relative Anteil beider Wellenfunktionen zum Grundzustand wird durch Substitution am 2,2’-Bipyridyl- oder Cyclopentadienyl-System signifikant beeinflusst. Modelle, mit denen sich dieses Verhalten qualitativ beschreiben lässt, wurden im Rahmen dieser Arbeit entwickelt. Ein kinetisch stabilisiertes, adduktfreies Titanocen wurde unter Verwendung des Di(tert.-butyl)cyclopentadienyl Liganden hergestellt und dessen Reaktivität gegenüber kleinen Molekülen, z.B. CO, N2 und H2 untersucht. Im Rahmen der Reaktivitätsstudien wurden ebenfalls 2,2’-Bipyridyl Addukte an das Cp’2Ti Fragment synthetisiert und deren magnetische Eigenschaften erforscht. Durch Variationen am 2,2’-Bipyridyl System lässt sich das Singlet-Triplet Splitting in diesem System gezielt steuern.

Due to tremendous improvements of high-performance computing resources as well
as numerical advances computational simulations became a common tool for modern
engineers. Nowadays, simulation of complex physics is more and more substituting a
large amount of physical experiments. While the vast compute power of large-scale
high-performance systems enabled for simulating more complex numerical equations,
handling the ever increasing amount of data with spatial and temporal resolution
burdens new challenges to scientists. Huge hardware and energy costs desire for
ecient utilization of high-performance systems. However, increasing complexity of
simulations raises the risk of failing simulations resulting in a single simulation to be
restarted multiple times. Computational Steering is a promising approach to interact
with running simulations which could prevent simulation crashes. The large amount
of data expands gaps in the amount of data that can be calculated and the amount of
data that can be processed. Extreme-scale simulations produce more data that can
even be stored. In this thesis, I propose several methods that enhance the process
of steering, exploring, visualizing, and analyzing ongoing numerical simulations.

In this study, 27 marine bacteria were screened for production of bioactive metabolites. Two strains from the surface of the soft coral Sinularia polydactyla, collected from the Red Sea, and three strains from different habitats in the North Sea were selected as a promising candidates for isolation of antimicrobial substances. A total of 50 compounds were isolated from the selected bacterial strains. From these metabolites 25 substances were known from natural sources, 10 substances were known as synthetic chemical and herein are reported as new natural products, and 13 metabolites are new. Two substances are still under elucidation. All new compounds were chemically and biologically characterized. Pseudoalteromonas sp. T268 produced simple phenol and oxindole derivatives. Production of homogentisic acid and WZ 268S-6 from this bacteria was affected by the salinity stress. WZ 268S-6 shows antimicrobial and cytotoxic activities. Its target is still unclear. Isolation of isatin from this strain points out for the possibility of using this substance as a chemotaxonomical marker for Alteromonas-like bacteria. A large number of nitro-substituted aromatic compounds were isolated from both Salegentibacter sp. T436 and Vibrio sp. WMBA1-4. They may be derived from metabolism of phenylalanine or tyrosine. From Salegentibacter sp. T436, 24 compounds were isolated, of which four compounds are new and six compounds were known as synthetic chemicals. WZ 436S-16 (dinitro-β-styrene) is the most potent antimicrobial and cytotoxic compound. It inhibits the oxygen uptake by N. coryli and causes apoptosis in the human promyelocytic leukaemia (HL-60 cells). From Vibrio sp. WMBA1-4, 13 new alkaloids were isolated, of which four were known as synthetic products and herein are reported as new substances from natural sources. The majority of these compounds show antimicrobial and cytotoxic activities. The cytotoxic activity of WMB4S-11 against the mouse lymphocytic leukaemia (L1210 cells) is due to the inhibition in the protein biosynthesis, while the remaining cytotoxic alkaloids have no effect on the synthesis of macromolecules in this cell line. The antibacterial activity of WMB4S-2, -11, -12, -13 and the antifungal activity of WMB4S-9 are not due to the inhibition in the macromolecules biosynthesis or in the oxygen uptake by the microorganisms. The biological activity of these nitro-aromatic compounds from Salegentibacter sp. T436 and Vibrio sp. WMBA1-4 is influenced by the presence of a nitro group and its position in respect to the hydroxyl group, number of the nitro groups, and the type of substitutions on the side chain. In diaryl-maleimide derivatives, types and position of substitution on the aryl rings, on the maleimide moity, and the hydrophobicity of the aryl ring itself lead to variations in the extent of the bioactivity of these derivatives. This is the first time that vibrindole (WMB4S-14) and turbomycin B or its noncationic form (WMB4S-15), isolated from Vibrio sp., are reported as cytotoxic compounds. WMB4S-15 inhibits the biosynthesis of macromolecules in L1210 cells. The structural similarity between some of the metabolites in this study and previously reported compounds from sponges, ascidians, and bryozoan indicates that the microbial origin of these compounds must be considered.

In this text we survey some large deviation results for diffusion processes. The first chapters present results from the literature such as the Freidlin-Wentzell theorem for diffusions with small noise. We use these results to prove a new large deviation theorem about diffusion processes with strong drift. This is the main result of the thesis. In the later chapters we give another application of large deviation results, namely to determine the exponential decay rate for the Bayes risk when separating two different processes. The final chapter presents techniques which help to experiment with rare events for diffusion processes by means of computer simulations.

In this thesis we explicitly solve several portfolio optimization problems in a very realistic setting. The fundamental assumptions on the market setting are motivated by practical experience and the resulting optimal strategies are challenged in numerical simulations.
We consider an investor who wants to maximize expected utility of terminal wealth by trading in a high-dimensional financial market with one riskless asset and several stocks.
The stock returns are driven by a Brownian motion and their drift is modelled by a Gaussian random variable. We consider a partial information setting, where the drift is unknown to the investor and has to be estimated from the observable stock prices in addition to some analyst’s opinion as proposed in [CLMZ06]. The best estimate given these observations is the well known Kalman-Bucy-Filter. We then consider an innovations process to transform the partial information setting into a market with complete information and an observable Gaussian drift process.
The investor is restricted to portfolio strategies satisfying several convex constraints.
These constraints can be due to legal restrictions, due to fund design or due to client's specifications. We cover in particular no-short-selling and no-borrowing constraints.
One popular approach to constrained portfolio optimization is the convex duality approach of Cvitanic and Karatzas. In [CK92] they introduce auxiliary stock markets with shifted market parameters and obtain a dual problem to the original portfolio optimization problem that can be better solvable than the primal problem.
Hence we consider this duality approach and using stochastic control methods we first solve the dual problems in the cases of logarithmic and power utility.
Here we apply a reverse separation approach in order to obtain areas where the corresponding Hamilton-Jacobi-Bellman differential equation can be solved. It turns out that these areas have a straightforward interpretation in terms of the resulting portfolio strategy. The areas differ between active and passive stocks, where active stocks are invested in, while passive stocks are not.
Afterwards we solve the auxiliary market given the optimal dual processes in a more general setting, allowing for various market settings and various dual processes.
We obtain explicit analytical formulas for the optimal portfolio policies and provide an algorithm that determines the correct formula for the optimal strategy in any case.
We also show optimality of our resulting portfolio strategies in different verification theorems.
Subsequently we challenge our theoretical results in a historical and an artificial simulation that are even closer to the real world market than the setting we used to derive our theoretical results. However, we still obtain compelling results indicating that our optimal strategies can outperform any benchmark in a real market in general.

The biodiversity of the cyanobacterial lichen flora of Vietnam is chronically understudied. Previous studies often neglected the lichens that inhabit lowlands especially outcrops and sand dunes that are common habitats in Vietnam.
A cyanolichen collection was gathered from lowlands of central and southern Vietnam to study their diversity and distribution. At the same time, cultured photobionts from those lichens were used for olyphasic taxonomic approach.
A total of 66 cyanolichens were recorded from lowland regions in central and southern of Vietnam, doubles the number of cyanolichens for Vietnam. 80% of them are new records for Vietnam in which a new species Pyrenopsis melanophthalma and two new unidentified lichinacean taxa were described.
A notably floristic segregation by habitats was indicated in the communities. Saxicolous Lichinales dominated in coastal outcrops that corresponded to 56% of lichen species richness. Lecanoralean cyanolichens and basidiolichens were found in the lowland forests. Precipitation correlated negatively to species richness in this study, indicating a competitive relationship.
Eleven cyanobacterial strains including 8 baeocyte-forming members of the genus Chroococcidiopsis and 3 heterocyte-forming species of the genera Nostoc and Scytonema were successfully isolated from lichens.
Phylogenetic and morphological analyses indicated that Chroococcidiopsis was the unique photobiont in Peltula. New mophological characters were found in two Chroococcidiopsis strains: (1) the purple content of cells in one photobiont strain that was isolated from a new lichinacean taxon, and (2) the pseudofilamentous feature by binary division from a strain that was isolated from Porocyphus dimorphus.
With respect to heterocyte-forming cyanobiont, Scytonema was confirmed as the photobiont in the ascolichen Heppia lutosa applying the polyphasic method. The genus Scytonema in the basidiolichens Cyphellostereum was morphologically examinated in lichen thalli. For the first time the intracellular haustorial system of basidiolichen genus Cyphellostereum was noted and investigated.
Phylogenetic analysis of photobiont strains Nostoc from Pannaria tavaresii and Parmeliella brisbanensis indicated that a high selectivity occurred in Parmeliella brisbanensis that were from different regions of the world, while low photobiont selectivity occurred among Pannaria tavaresii samples from different geographical regions.
The herewith presented dissertation is therefore an important contribution to the lichen flora of Vietnam and a significant improvement of the actual knowledge about cyanolichens in this country.

In current practices of system-on-chip (SoC) design a trend can be observed to integrate more and more low-level software components into the system hardware at different levels of granularity. The implementation of important control functions and communication structures is frequently shifted from the SoC’s hardware into its firmware. As a result, the tight coupling of hardware and software at a low level of granularity raises substantial verification challenges since the conventional practice of verifying hardware and software independently is no longer sufficient. This calls for new methods for verification based on a joint analysis of hardware and software.
This thesis proposes hardware-dependent models of low-level software for performing formal verification. The proposed models are conceived to represent the software integrated with its hardware environment according to the current SoC design practices. Two hardware/software integration scenarios are addressed in this thesis, namely, speed-independent communication of the processor with its hardware periphery and cycle-accurate integration of firmware into an SoC module. For speed-independent hardware/software integration an approach for equivalence checking of hardware-dependent software is proposed and an evaluated. For the case of cycle-accurate hardware/software integration, a model for hardware/software co-verification has been developed and experimentally evaluated by applying it to property checking.

Induktionsschweißen kann sowohl für das Schweißen von thermoplastischen Faser-
Kunststoff-Verbunden als auch für das Verbinden von Metall/Faser-Kunststoff-
Verbunden eingesetzt werden. Nach Betrachtung der Möglichkeiten einer solchen
Verbindung wurde festgestellt, dass die Verbindungsqualität durch die
Oberflächenvorbehandlung des metallischen und des polymeren Fügepartners und
durch die Prozessbedingungen bestimmt wird.
Verschiedene neue Werkzeuge (z.B. spezielle Probenhalterungen, temperierbarer
Anpressstempel, Erwärmungs- und Konsolidierungsrolle) wurden entwickelt und in
die Induktionsschweißanlage zur Herstellung von Metall/Faser-Kunststoff-Verbunden
integriert. Topografische Analysen mittels Rasterelektronenmikroskopie und
Laserprofilometrie zeigen einen großen Einfluss der Vorbehandlungsmethoden auf
die Oberflächenrauhigkeit. Zusätzlich ändert die Vorbehandlung die physikalischen
(Oberflächenenergie) und die chemischen Eigenschaften (Atomkonzentration). Die
Eigenschaften der Verbindungen wurden zuerst anhand von Zugscherprüfungen und
parallel durch Oberflächenanalysen untersucht. Die Ergebnisse dieser
Untersuchungen zeigen:
• Die Vorbehandlungsmethoden Korundstrahlen und Sauerbeizen führen bei
dem metallischen Fügepartner zu den höchsten Verbundfestigkeiten. Die
Atmosphären-Plasmareinigung des polymeren Fügepartners ergibt eine
Zunahme der Zugscherfestigkeit von ca. 10 % sowie auch eine Verkleinerung
des Vertrauensbereiches.
• Die Zugscherfestigkeit hängt vom Prozessdruck und damit vom Fließverhalten
des Polymers in der Fügezone ab.
• Die Orientierung der Prüfkraft relativ zur Faserorientierung hat keinen Einfluss
auf die Zugscherfestigkeit der eingesetzten faserverstärkten Materialien.
• Die Leinwand-Bindung, mit mehr polymerreichen Zonen, führt zu einem
geringen Anstieg der Zugscherfestigkeit im Vergleich zu einer Atlas 1/4-
Bindung. Die Gelege-Struktur ergibt durch Faserverschiebungen ähnliche
Festigkeiten wie die Leinwand-Bindung. Es zeigt sich, dass die
Verbundfestigkeit durch das Polymer bestimmt wird. • Die Zugscherfestigkeit gewinnt einen großen Anstieg durch eine zusätzliche
Polymerfolie in der Fügezone. Die Schliffbilder zeigen eine polymere
Zwischenschichtdicke von 5 bis 20 μm für AlMg3-CF/PA66.
• Durch den gezielten Einsatz verschiedener Vorbehandlungsmethoden
(Korundstrahlen mit zusätzlichem Polymer) kann die Zugscherfestigkeit auf bis
zu 14 MPa für AlMg3-CF/PA66-Verbunde und 18 MPa für DC01-CF/PEEKVerbunde
gegenüber dem unbehandelten Zustand verdoppelt werden. Weitere Untersuchungen an den Prozessparametern ergaben für DC01-CF/PEEKVerbunde,
dass folgende Einstellungen zu einer weiteren Steigerung der
Zugscherfestigkeit auf 19 MPa führen:
• Eine Starttemperatur des Anpresstempels von 370 °C.
• Eine Haltezeit von 7 Minuten.
• Eine Abkühlrate von 6 °C/min.
Für AlMg3-CF/PA66 zeigte sich, dass eine Anpresstemperatur von 10 °C zu einer
Zugscherfestigkeit von 14,5 MPa führt. Diese beiden Zugscherfestigkeiten sind
lediglich 10 – 15 % geringer als die unter optimalen Bedingungen hergestellten
Klebeverbindungen.
Erste Untersuchungen zeigen, dass bei galvanischer Korrosion von Metall/FKVVerbunden
eine schnelle Abnahme der Zugscherfestigkeit erfolgt. Hierfür wurden die
Proben drei Wochen in Wasser gelagert. Beim direkten Kontakt zwischen
Kohlenstofffaser und Aluminium erklärt sich dies durch Korrosion in der Fügezone.
Dabei sinken die Zugscherfestigkeiten der Proben bis auf 5 MPa. Bei Proben mit
einer Glasfaserlage als Isolationsschicht zeigen sich keine Korrosionsprodukte und
die Zugscherfestigkeit nimmt um 30 % bis auf 8 – 9 MPa ab.
Bei in Salzwasser gelagerten Proben ist die galvanische Korrosion deutlich stärker
ausgeprägt. Bereits nach einer Woche besitzen die acetongereinigten Proben mit
zusätzlichem Polymer lediglich eine Restzugscherfestigkeit von 3 bis 4 MPa. Die
korundgestrahlten Proben zeigen Korrosionsprodukte am Rande der Fügezone und
in der Fügezone, weisen aber dennoch eine Zugscherfestigkeit von ca. 10 MPa auf.
Die glasfaserverstärkten Proben zeigen weder Korrosionsprodukte noch eine
Abnahme der Zugscherfestigkeit. Dynamisch thermografische Analysen wurden in verschiedenen Umgebungsgasen
durchgeführt, um die Zersetzungstemperatur des faserverstärkten Polymers zu
bestimmen. Im Falle von CF/PA66 führte dies nicht zu einer Vergrößerung des
Prozessfensters, da die Zersetzung hauptsächlich thermisch und nicht thermooxidativ
ist. Die festgestellte Zersetzungstemperatur von CF/PEEK in Luft betrug
550 °C. Die Vergrößerung des Prozessfensters ist für CF/PA66 gering und zeigte
auch keinen Anstieg in der Zugscherfestigkeit nach dem Schweißen in Stickstoff.
Trotzdem hat das Induktionsschweißen unter Schutzgas ein großes Potential für
gesättigte Kohlenwasserstoffe wie z.B. glasfaserverstärktes Polypropylen. Hier wurde
die Zersetzungstemperatur von 230 °C in Luft auf 390 °C in Stickstoff erhöht.
Es wurde ein Demonstrator bestehend aus einem Aluminium-Profil und einer
CF/PA66-Platte hergestellt, womit gezeigt werden konnte, dass die erworbenen
Kenntnisse auch für die industrielle Anwendung umsetzbar sind. Mittels analytischer
Modelle und FE-Berechnungen wurde die induktive Erwärmung erfolgreich
nachgebildet.

It is well known that the structure at a microscopic point of view strongly influences the
macroscopic properties of materials. Moreover, the advancement in imaging technologies allows
to capture the complexity of the structures at always decreasing scales. Therefore, more
sophisticated image analysis techniques are needed.
This thesis provides tools to geometrically characterize different types of three-dimensional
structures with applications to industrial production and to materials science. Our goal is to
enhance methods that allow the extraction of geometric features from images and the automatic
processing of the information.
In particular, we investigate which characteristics are sufficient and necessary to infer
the desired information, such as particles classification for technical cleanliness and
fitting of stochastic models in materials science.
In the production line of automotive industry, dirt particles collect on the surface of mechanical
components. Residual dirt might reduce the performance and durability of assembled products.
Geometric characterization of these particles allows to identify their potential danger.
While the current standards are based on 2d microscopic images, we extend the characterization
to 3d.
In particular, we provide a collection of parameters that exhaustively describe size and shape
of three-dimensional objects and can be efficiently estimated from binary images. Furthermore,
we show that only a few features are sufficient to classify particles according to the standards
of technical cleanliness.
In the context of materials science, we consider two types of microstructures: fiber systems
and foams.
Stochastic geometry grants the fundamentals for versatile models able to encompass the
geometry observed in the samples. To allow automatic model fitting, we need rules stating which
parameters of the model yield the best-fitting characteristics. However, the validity of such
rules strongly depends on the properties of the structures and on the choice of the model.
For instance, isotropic orientation distribution yields the best theoretical results for Boolean
models and Poisson processes of cylinders with circular cross sections. Nevertheless, fiber
systems in composites are often anisotropic.
Starting from analytical results from the literature, we derive formulae for anisotropic
Poisson processes of cylinders with polygonal cross sections that can be directly used in
applications. We apply this procedure to a sample of medium density fiber board. Even
if image resolution does not allow to estimate reliably characteristics of the singles fibers,
we can fit Boolean models and Poisson cylinder processes. In particular, we show the complete
model fitting and validation procedure with cylinders with circular and squared cross sections.
Different problems arise when modeling cellular materials. Motivated by the physics of foams,
random Laguerre tessellations are a good choice to model the pore system of foams.
Considering tessellations generated by systems of non-overlapping spheres allows to control the
cell size distribution, but yields the loss of an analytical description of the model.
Nevertheless, automatic model fitting can still be obtained by approximating the characteristics
of the tessellation depending on the parameters of the model. We investigate how to improve
the choice of the model parameters. Angles between facets and between edges were never considered
so far. We show that the distributions of angles in Laguerre tessellations
depend on the model parameters. Thus, including the moments of the angles still allows automatic
model fitting. Moreover, we propose an algorithm to estimate angles from images of real foams.
We observe that angles are matched well in random Laguerre tessellations also when they are not
employed to choose the model parameters. Then, we concentrate on the edge length distribution. In
Laguerre tessellations occur many more short edges than in real foams. To deal with this problem,
we consider relaxed models. Relaxation refers to topological and structural modifications
of a tessellation in order to make it comply with Plateau's laws of mechanical equilibrium. We inspect
samples of different types of foams, closed and open cell foams, polymeric and metallic. By comparing
the geometric characteristics of the model and of the relaxed tessellations, we conclude that whether
the relaxation improves the edge length distribution strongly depends on the type of foam.

The present thesis is concerned with the simulation of the loading behaviour of both hybrid lightweight structures and piezoelectric mesostructures, with a special focus on solid interfaces on the meso scale. Furthermore, an analytical review on bifurcation modes of continuum-interface problems is included. The inelastic interface behaviour is characterised by elastoplastic, viscous, damaging and fatigue-motivated models. For related numerical computations, the Finite Element Method is applied. In this context, so-called interface elements play an important role. The simulation results are reflected by numerous examples which are partially correlated to experimental data.