### Refine

#### Year of publication

- 1999 (76) (remove)

#### Document Type

- Preprint (51)
- Article (16)
- Course Material (6)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)

#### Keywords

- Praktikum (6)
- Brillouin light scattering spectroscopy (2)
- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)
- spin wave quantization (2)
- 90° orientation (1)
- Brillouin light scattering (1)

#### Faculty / Organisational entity

- Fachbereich Physik (76) (remove)

Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.

Trigonometric invariants are defined for each Weyl group orbit on the root lattice. They are real and periodic on the coroot lattice. Their polynomial algebra is spanned by a basis which is calculated by means of an algorithm. The invariants of the basis can be used as coordinates in any cell of the coroot space and lead to an exactly solvable model of Sutherland type. We apply this construction to the \(F_4\) case.

The Hamiltonian of the \(N\)-particle Calogero model can be expressed in terms of generators of a Lie algebra for a definite class of representations. Maintaining this Lie algebra, its representations, and the flatness of the Riemannian metric belonging to the second order differential operator, the set of all possible quadratic Lie algebra forms is investigated. For \(N = 3\) and \(N = 4\) such forms are constructed explicitly and shown to correspond to exactly solvable Sutherland models. The results can be carried over easily to all \(N\).

Abstract: We aim to establish a link between path-integral formulations of quantum and classical field theories via diagram expansions. This link should result in an independent constructive characterisation of the measure in Feynman path integrals in terms of a stochastic differential equation (SDE) and also in the possibility of applying methods of quantum field theory to classical stochastic problems. As a first step we derive in the present paper a formal solution to an arbitrary c-number SDE in a form which coincides with that of Wick's theorem for interacting bosonic quantum fields. We show that the choice of stochastic calculus in the SDE may be regarded as a result of regularisation, which in turn removes ultraviolet divergences from the corresponding diagram series.

We show that the solution to an arbitrary c-number stochastic differential equation (SDE) can be represented as a diagram series. Both the diagram rules and the properties of the graphical elements reflect causality properties of the SDE and this series is therefore called a causal diagram series. We also discuss the converse problem, i.e. how to construct an SDE of which a formal solution is a given causal diagram series. This then allows for a nonperturbative summation of the diagram series by solving this SDE, numerically or analytically.

Abstract: We describe a general technique that allows for an ideal transfer of quantum correlations between light fields and metastable states of matter. The technique is based on trapping quantum states of photons in coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. We discuss possible applications such as quantum state memories, generation of squeezed atomic states, preparation of entangled atomic ensembles and quantum information processing.

Abstract: We show that it is possible to "store" quantum states of single-photon fields by mapping them onto collective meta-stable states of an optically dense, coherently driven medium inside an optical resonator. An adiabatic technique is suggested which allows to transfer non-classical correlations from traveling-wave single-photon wave-packets into atomic states and vise versa with nearly 100% efficiency. In contrast to previous approaches involving single atoms, the present technique does not require the strong coupling regime corresponding to high-Q micro-cavities. Instead, intracavity Electromagnetically Induced Transparency is used to achieve a strong coupling between the cavity mode and the atoms.

Mirrorless oscillation based on resonantly enhanced 4-wave mixing: All-order analytic solutions
(1999)

Abstract: The phase transition to mirrorless oscillation in resonantly enhanced four-wave mixing in double-A systems are studied analytically for the ideal case of infinite lifetimes of ground-state coherences. The stationary susceptibilities are obtained in all orders of the generated fields and analytic solutions of the coupled nonlinear differential equations for the field amplitudes are derived and discussed.

Annual Report 1998
(1999)

A new advanced space- and time-resolved Brillouin light scattering (BLS) technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The new technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Linear effects, such as the unidirectional exci-tation of magnetostatic surface waves and the propagation of backward volume magnetostatic waves (BVMSW) in two preferential directions due to the non-collinearity of their phase and group velocities are investigated in detail. In the nonlinear regime stationary and non-stationary self-focusing effects are studied. It is shown, that non-linear diffraction of a stationary BVMSW beam, having a finite transverse aperture, leads to self-focusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet). Numerical modeling of the diffraction process by using a variational approach and direct numerical integration of the two-dimensional non-linear Schrödinger equation provides a good qualitative description of the observed phenomena.

Diese Dissertation ist ein Beitrag zur Untersuchung der Anwendbarkeit der Random-Matrix-Theorie (RMT) in der Quantenchromodynamik (QCD). Untersucht werden die Fluktuationen der kleinen Eigenwerte des Dirac-Operators mit Kogut-Susskind-Fermionen und SUc(2)-Eichfeldern. Diese werden mit Hilfe eines Hybrid-Monte-Carlo-Algorithmus erzeugt. Die Universalität der Fluktuationen kleiner Eigenwerte, das heisst die Übereinstimmung der numerisch berechneten Spektren mit den Vorhersagen des chiralen Random-Matrix-Modells wird in dieser Arbeit nachgewiesen. Die Bedeutung dieses Resultats liegt in der Allgemeinheit des Ansatzes, die QCD-Zustandssumme für ein endliches Volumen durch ein Random-Matrix-Modell zu approximieren.