### Refine

#### Year of publication

- 1999 (39) (remove)

#### Keywords

- resolution (3)
- theorem proving (3)
- Partial functions (2)
- analogy (2)
- conservative extension (2)
- consistency (2)
- frames (2)
- many-valued logic (2)
- problem formulation (2)
- tactics (2)

#### Faculty / Organisational entity

- Fachbereich Informatik (39) (remove)

We present a mathematical knowledge base containing the factual know-ledge of the first of three parts of a textbook on semi-groups and automata,namely "P. Deussen: Halbgruppen und Automaten". Like almost all math-ematical textbooks this textbook is not self-contained, but there are somealgebraic and set-theoretical concepts not being explained. These concepts areadded to the knowledge base. Furthermore there is knowledge about the nat-ural numbers, which is formalized following the first paragraph of "E. Landau:Grundlagen der Analysis".The data base is written in a sorted higher-order logic, a variant of POST ,the working language of the proof development environment OmegaGamma mkrp. We dis-tinguish three different types of knowledge: axioms, definitions, and theorems.Up to now, there are only 2 axioms (natural numbers and cardinality), 149definitions (like that for a semi-group), and 165 theorems. The consistency ofsuch knowledge bases cannot be proved in general, but inconsistencies may beimported only by the axioms. Definitions and theorems should not lead to anyinconsistency since definitions form conservative extensions and theorems areproved to be consequences.

The semantics of everyday language and the semanticsof its naive translation into classical first-order language consider-ably differ. An important discrepancy that is addressed in this paperis about the implicit assumption what exists. For instance, in thecase of universal quantification natural language uses restrictions andpresupposes that these restrictions are non-empty, while in classi-cal logic it is only assumed that the whole universe is non-empty.On the other hand, all constants mentioned in classical logic arepresupposed to exist, while it makes no problems to speak about hy-pothetical objects in everyday language. These problems have beendiscussed in philosophical logic and some adequate many-valuedlogics were developed to model these phenomena much better thanclassical first-order logic can do. An adequate calculus, however, hasnot yet been given. Recent years have seen a thorough investigationof the framework of many-valued truth-functional logics. UnfortuADnately, restricted quantifications are not truth-functional, hence theydo not fit the framework directly. We solve this problem by applyingrecent methods from sorted logics.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago, but there has not been a satisfact-ory mechanization. Recent years have seen a thorough investigation ofthe framework of many-valued truth-functional logics. However, strongKleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problemby applying recent methods from sorted logics. This paper presents atableau calculus that combines the proper treatment of partial functionswith the efficiency of sorted calculi.

The reasoning power of human-oriented plan-based reasoning systems is primarilyderived from their domain-specific problem solving knowledge. Such knowledge is, how-ever, intrinsically incomplete. In order to model the human ability of adapting existingmethods to new situations we present in this work a declarative approach for represent-ing methods, which can be adapted by so-called meta-methods. Since apparently thesuccess of this approach relies on the existence of general and strong meta-methods,we describe several meta-methods of general interest in detail by presenting the prob-lem solving process of two familiar classes of mathematical problems. These examplesshould illustrate our philosophy of proof planning as well: besides planning with thecurrent repertoire of methods, the repertoire of methods evolves with experience inthat new ones are created by meta-methods which modify existing ones.

In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.

Extending the planADbased paradigm for auto-mated theorem proving, we developed in previ-ous work a declarative approach towards rep-resenting methods in a proof planning frame-work to support their mechanical modification.This paper presents a detailed study of a classof particular methods, embodying variations ofa mathematical technique called diagonaliza-tion. The purpose of this paper is mainly two-fold. First we demonstrate that typical math-ematical methods can be represented in ourframework in a natural way. Second we illus-trate our philosophy of proof planning: besidesplanning with a fixed repertoire of methods,metaADmethods create new methods by modify-ing existing ones. With the help of three differ-ent diagonalization problems we present an ex-ample trace protocol of the evolution of meth-ods: an initial method is extracted from a par-ticular successful proof. This initial method isthen reformulated for the subsequent problems,and more general methods can be obtained byabstracting existing methods. Finally we comeup with a fairly abstract method capable ofdealing with all the three problems, since it cap-tures the very key idea of diagonalization.

Mechanised reasoning systems and computer algebra systems have apparentlydifferent objectives. Their integration is, however, highly desirable, since in manyformal proofs both of the two different tasks, proving and calculating, have to beperformed. Even more importantly, proof and computation are often interwoven andnot easily separable. In the context of producing reliable proofs, the question howto ensure correctness when integrating a computer algebra system into a mechanisedreasoning system is crucial. In this contribution, we discuss the correctness prob-lems that arise from such an integration and advocate an approach in which thecalculations of the computer algebra system are checked at the calculus level of themechanised reasoning system. This can be achieved by adding a verbose mode to thecomputer algebra system which produces high-level protocol information that can beprocessed by an interface to derive proof plans. Such a proof plan in turn can beexpanded to proofs at different levels of abstraction, so the approach is well-suited forproducing a high-level verbalised explication as well as for a low-level machine check-able calculus-level proof. We present an implementation of our ideas and exemplifythem using an automatically solved extended example.

Typical examples, that is, examples that are representative for a particular situationor concept, play an important role in human knowledge representation and reasoning.In real life situations more often than not, instead of a lengthy abstract characteriza-tion, a typical example is used to describe the situation. This well-known observationhas been the motivation for various investigations in experimental psychology, whichalso motivate our formal characterization of typical examples, based on a partial orderfor their typicality. Reasoning by typical examples is then developed as a special caseof analogical reasoning using the semantic information contained in the correspondingconcept structures. We derive new inference rules by replacing the explicit informa-tion about connections and similarity, which are normally used to formalize analogicalinference rules, by information about the relationship to typical examples. Using theseinference rules analogical reasoning proceeds by checking a related typical example,this is a form of reasoning based on semantic information from cases.

Deduktionssysteme
(1999)

Die Beweisentwicklungsumgebung Omega-Mkrp soll Mathematiker bei einer ihrer Haupttätigkeiten, nämlich dem Beweisen mathematischer Theoreme unterstützen. Diese Unterstützung muß so komfortabel sein, daß die Beweise mit vertretbarem Aufwand formal durchgeführt werden können und daß die Korrektheit der so erzeugten Beweise durch das System sichergestellt wird. Ein solches System wird sich nur dann wirklich durchsetzen, wenn die rechnergestützte Suche nach formalen Beweisen weniger aufwendig und leichter ist, als ohne das System. Um dies zu erreichen, ergeben sich verschiedene Anforderungen an eine solche Entwicklungsumgebung, die wir im einzelnen beschreiben. Diese betreffen insbesondere die Ausdruckskraft der verwendeten Objektsprache, die Möglichkeit, abstrakt über Beweispläne zu reden, die am Menschen orientierte Präsentation der gefundenen Beweise, aber auch die effiziente Unterstützung beim Füllen von Beweislücken. Das im folgenden vorgestellte Omega-Mkrp-System ist eine Synthese der Ansätze des vollautomatischen, des interaktiven und des planbasierten Beweisens und versucht erstmalig die Ergebnisse dieser drei Forschungsrichtungen in einem System zu vereinigen. Dieser Artikel soll eine Übersicht über unsere Arbeit an diesem System geben.

In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago. This approach allows rejectingcertain unwanted formulae as faulty, which the simpler two-valued onesaccept. We have developed resolution and tableau calculi for automatedtheorem proving that take the restrictions of the three-valued logic intoaccount, which however have the severe drawback that existing theo-rem provers cannot directly be adapted to the technique. Even recentlyimplemented calculi for many-valued logics are not well-suited, since inthose the quantification does not exclude the undefined element. In thiswork we show, that it is possible to enhance a two-valued theorem proverby a simple strategy so that it can be used to generate proofs for the the-orems of the three-valued setting. By this we are able to use an existingtheorem prover for a large fragment of the language.

Even though it is not very often admitted, partial functions do play asignificant role in many practical applications of deduction systems. Kleenehas already given a semantic account of partial functions using three-valuedlogic decades ago, but there has not been a satisfactory mechanization. Recentyears have seen a thorough investigation of the framework of many-valuedtruth-functional logics. However, strong Kleene logic, where quantificationis restricted and therefore not truth-functional, does not fit the frameworkdirectly. We solve this problem by applying recent methods from sorted logics.This paper presents a resolution calculus that combines the proper treatmentof partial functions with the efficiency of sorted calculi.

This paper concerns a knowledge structure called method , within a compu-tational model for human oriented deduction. With human oriented theoremproving cast as an interleaving process of planning and verification, the body ofall methods reflects the reasoning repertoire of a reasoning system. While weadopt the general structure of methods introduced by Alan Bundy, we make anessential advancement in that we strictly separate the declarative knowledgefrom the procedural knowledge. This is achieved by postulating some stand-ard types of knowledge we have identified, such as inference rules, assertions,and proof schemata, together with corresponding knowledge interpreters. Ourapproach in effect changes the way deductive knowledge is encoded: A newcompound declarative knowledge structure, the proof schema, takes the placeof complicated procedures for modeling specific proof strategies. This change ofparadigm not only leads to representations easier to understand, it also enablesus modeling the even more important activity of formulating meta-methods,that is, operators that adapt existing methods to suit novel situations. In thispaper, we first introduce briefly the general framework for describing methods.Then we turn to several types of knowledge with their interpreters. Finally,we briefly illustrate some meta-methods.