### Refine

#### Year of publication

- 1999 (10) (remove)

#### Keywords

- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)
- Filter-Diagonalization (1)
- Pullen Edmonds system (1)
- Quantum Chaos (1)
- Quantum mechanics (1)
- Stark systems (1)

A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

The paper studies metastable states of a Bloch electron in the presence of external ac and dc fields. Provided resonance condition between period of the driving frequency and the Bloch period, the complex quasienergies are numerically calculated for two qualitatively different regimes (quasiregular and chaotic) of the system dynamics. For the chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is demonstrated to be a kind of quantum interference phenomenon sensitive to the resonance condition.

The paper studies quantum states of a Bloch particle in presence of external ac and dc fields. Provided the period of the ac field and the Bloch period are commensurate, an effective scattering matrix is introduced, the complex poles of which are the system quasienergy spectrum. The statistics of the resonance width and the Wigner delay time shows a close relation of the problem to random matrix theory of chaotic scattering.

The Filter-Diagonalization Method is applied to time periodic Hamiltonians and used to find selectively the regular and chaotic quasienergies of a driven 2D rotor. The use of N cross-correlation probability amplitudes enables a selective calculation of the quasienergies from short time propagation to the time T (N). Compared to the propagation time T (1) which is required for resolving the quasienergy spectrum with the same accuracy from auto-correlation calculations, the cross-correlation time T (N) is shorter by the factor N , that is T (1) = N T (N).

The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.

Quantum Chaos
(1999)

The study of dynamical quantum systems, which are classically chaotic, and the search for quantum manifestations of classical chaos, require large scale numerical computations. Special numerical techniques developed and applied in such studies are discussed: The numerical solution of the time-dependent Schr-odinger equation, the construction of quantum phase space densities, quantum dynamics in phase space, the use of phase space entropies for characterizing localization phenomena, etc. As an illustration, the dynamics of a driven one-dimensional anharmonic oscillator is studied, both classically and quantum mechanically. In addition, spectral properties and chaotic tunneling are addressed.

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

A new method for calculating Stark resonances is presented and applied for illustration to the simple case of a one-particle, one-dimensional model Hamiltonian. The method is applicable for weak and strong dc fields. The only need, also for the case of many particles in multi-dimensional space, are either the short time evolution matrix elements or the eigenvalues and Fourier components of the eigenfunctions of the field-free Hamiltonian.