### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (1290)
- Preprint (1148)
- Report (471)
- Article (240)
- Periodical Part (219)
- Master's Thesis (104)
- Working Paper (82)
- Conference Proceeding (30)
- Diploma Thesis (29)
- Study Thesis (20)

#### Language

- English (2296)
- German (1407)
- Spanish (4)
- Multiple languages (1)

#### Has Fulltext

- yes (3708) (remove)

#### Keywords

- AG-RESY (64)
- PARO (31)
- Stadtplanung (26)
- Modellierung (22)
- Case-Based Reasoning (20)
- Simulation (19)
- Visualisierung (18)
- SKALP (16)
- CoMo-Kit (15)
- Apoptosis (12)

#### Faculty / Organisational entity

- Fachbereich Mathematik (1013)
- Fachbereich Informatik (809)
- Fachbereich Chemie (306)
- Fachbereich Physik (266)
- Fachbereich Maschinenbau und Verfahrenstechnik (262)
- Fraunhofer (ITWM) (222)
- Fachbereich Sozialwissenschaften (214)
- Fachbereich Elektrotechnik und Informationstechnik (124)
- Fachbereich Biologie (106)
- Fachbereich ARUBI (83)

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

We report on Brillouin light scattering investigations of the elastic properties in Co/Ni superlattices which exhibit localized electronic eigenstates near the Fermi level causing an oscillation of the resistivity as a function of the superlattice periodicity A. No oscillations of the Rayleigh and Sezawa mode as a function of A could be observed within an error margin of +- 2% indicating that the localized electronic states do not contribute to the elastic constants.

This paper considers a transmission boundary-value problem for the time-harmonic Maxwell equations neglecting displacement currents which is frequently used for the numerical computation of eddy-currents. Across material boundaries the tangential components of the magnetic field H and the normal component of the magnetization müH are assumed to be continuous. this problem admits a hyperplane of solutions if the domains under consideration are multiply connected. Using integral equation methods and singular perturbation theory it is shown that this hyperplane contains a unique point which is the limit of the classical electromagnetic transmission boundary-value problem for vanishing displacement currents. Considering the convergence proof, a simple contructive criterion how to select this solution is immediately derived.

A Nonlinear Ray Theory
(1994)

A proof of the famous Huygens" method of wavefront construction is reviewed and it is shown that the method is embedded in the geometrical optics theory for the calculation of the intensity of the wave based on high frequency approximation. It is then shown that Huygens" method can be extended in a natural way to the construction of a weakly nonlinear wavefront. This is an elegant nonlinear ray theory based on an approximation published by the author in 1975 which was inspired by the work of Gubkin. In this theory, the wave amplitude correction is incorporated in the eikonal equation itself and this leads to a sytem of ray equations coupled to the transport equation. The theory shows that the nonlinear rays stretch due to the wave amplitude, as in the work of Choquet-Bruhat (1969), followed by Hunter, Majda, Keller and Rosales, but in addition the wavefront rotates due to a non-uniform distribution of the amplitude on the wavefront. Thus the amplitude of the wave modifies the rays and the wavefront geometry, which in turn affects the growth and decay of the amplitude. Our theory also shows that a compression nonlinear wavefront may develop a kink but an expansion one always remains smooth. In the end, an exact solution showing the resolution of a linear caustic due to nonlinearity has been presented. The theory incorporates all features of Whitham" s geometrical shock dynamics.

The edge enhancement property of a nonlinear diffusion equation with a suitable expression for the diffusivity is an important feature for image processing. We present an algorithm to solve this equation in a wavelet basis and discuss its one dimensional version in some detail. Sample calculations demonstrate principle effects and treat in particular the case of highly noise perturbed signals. The results are discussed with respect to performance, efficiency, choice of parameters and are illustrated by a large number of figures. Finally, a comparison with a Fourier method and a finite volume method is performed.

Particle Methods
(1994)

In these lectures we will mainly treat a billard game. Our particles will be hard spheres. Not always: We will also touch cases, where particles have interior energies due to rotation or vibration, which they exchange in a collision, and we will talk about chemical reactions happening during a collision. But many essential aspects occur already in the billard case which will be therefore paradigmatic. I do not know enough about semiconductors to handle collisions there - the Boltzmann case is certainly different but may give some idea even for the other cases.

We have presented here a two-dimensional kinetical scheme for equations governing the motion of a compressible flow of an ideal gas (air) based on the Kaniel method. The basic flux functions are computed analytically and have been used in the organization of the flux computation. The algorithm is implemented and tested for the 1D shock and 2D shock-obstacle interaction problems.

This paper contains the basic ideas and practical aspects for numerical methods for solving the Boltzmann Equation. The main field of application considered is the reentry of a Space Shuttle in the transition from free molecular flow to continuum flow. The method used will be called Finite Pointset Method (FPM) approximating the solution by finite sets of particles in a rigorously defined way. Convergence results are cited while practical aspects of the algorithm are emphasized. Ideas for the transition to the Navier Stokes domain are shortly discussed.

Treating polyatomic gases in kinetic gas theory requires an appropriate molecule model taking into account the additional internal structure of the gas particles. In this paper we describe two such models, each arising from quite different approaches to this problem. A simulation scheme for solving the corresponding kinetic equations is presented and some numerical results to 1D shockwaves are compared.

This report contains the following three papers about computations of rarefied gas flows:; ; a) Rarefied gas flow around a disc with different angles of attack, published in the proceedings of the 17th RGD Symposium, Aachen, 1990.; ; b) Hypersonic flow calculations around a 3D-deltawing at low Knudsen numbers, published in the proceedings of the 17th RGD Symposium,; Aachen, 1990.; ; c) Rarefied gas flow around a 3D-deltawing, published in the proceedings of the Workshop on Hypersonic Flows for Reentry Problems,; Part 1, Antibes, France, January 22-25, 1990.; ; All computations are part of the HERMES Research and Development Program.

Industrial mathematics has many faces; but its essential feature is the cooperation of partners - from industry and from universities - with quite different interest (business versus academic carreer), normally working on different time scales. They measure success in a different way (selling rate against citing index), they have different hierarchies of values and are very often distrusting each other. Industry doubts that mathematicians are willing and/or able to produce something real practical and useful (and the mathematicians should not be too much surprised about this attitude, they very often doubt themselves) - mathematicians are afraid to loose their competence (their ideal of scientific truth, to say it more idealistically), to sell their souls.

As an alternative to the commonly used Monte Carlo Simulation methods for solving the Boltzmann equation we have developed a new code with certain important improvements. We present results of calculations on the reentry phase of a space shuttle. One aim was to test physical models of internal energies and of gas-surface interactions.

Patterns are considered as normalized measures and distances between them are defined as distances of the corresponding measures using metrics in measure spaces. This idea can be applied for pattern recognition if smeared patterns have to be compared with given ideal patterns. Different metrics are sensitive to different characteristics of the patterns - this is demonstrated in discussing examples. Particular attention is paid to a problem of Quality Control for an artificial fabric, where the distance to uniformity is defined and evaluated; the results are now used in industry.