### Refine

#### Year of publication

#### Document Type

- Preprint (159)
- Article (46)
- Periodical Part (21)
- Doctoral Thesis (19)
- Master's Thesis (8)
- Course Material (6)
- Working Paper (5)
- Diploma Thesis (2)

#### Keywords

- resonances (12)
- Wannier-Stark systems (10)
- Quantum mechanics (8)
- lifetimes (8)
- Praktikum (6)
- quantum mechanics (6)
- lifetime statistics (5)
- Lasererzeugtes Plasma (3)
- entropy (3)
- localization (3)

#### Faculty / Organisational entity

- Fachbereich Physik (266) (remove)

III/V semiconductor quantum dots (QD) are in the focus of optoelectronics research for about 25 years now. Most of the work
has been done on InAs QD on GaAs substrate. But, e.g., Ga(As)Sb (antimonide) QD on GaAs substrate/buffer have also gained
attention for the last 12 years.There is a scientific dispute on whether there is a wetting layer before antimonide QD formation, as
commonly expected for Stransky-Krastanov growth, or not. Usually ex situ photoluminescence (PL) and atomic force microscope
(AFM) measurements are performed to resolve similar issues. In this contribution, we show that reflectance anisotropy/difference
spectroscopy (RAS/RDS) can be used for the same purpose as an in situ, real-time monitoring technique. It can be employed not
only to identify QD growth via a distinct RAS spectrum, but also to get information on the existence of a wetting layer and its
thickness. The data suggest that for antimonide QD growth the wetting layer has a thickness of 1 ML (one monolayer) only.

2D quantum dilaton gravitational Hamiltonian, boundary terms and new definition for total energy
(1995)

The ADM and Bondi mass for the RST model have been first discussed from Hawking and Horowitz's argument. Since there is a nonlocal term in the RST model, the RST lagrangian has to be localized so that Hawking and Horowitz's proposal can be carried out. Expressing the localized RST action in terms of the ADM formulation, the RST Hamiltonian can be derived, meanwhile keeping track of all boundary terms. Then the total boundary terms can be taken as the total energy for the RST model. Our result shows that the previous expression for the ADM and Bondi mass actually needs to be modified at quantum level, but at classical level, our mass formula can be reduced to that given by Bilal and Kogan [5] and de Alwis [6]. It has been found that there is a new contribution to the ADM and Bondi mass from the RST boundary due to the existence of the hidden dynamical field. The ADM and Bondi mass with and without the RST boundary for the static and dynamical solutions have been discussed respectively in detail, and some new properties have been found. The thunderpop of the RST model has also been encountered in our new Bondi mass formula.

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

A new look at the RST model
(1996)

The RST model is augmented by the addition of a scalar field and a boundary term so that it is well-posed and local. Expressing the RST action in terms of the ADM formulation, the constraint structure can be analysed completely. It is shown that from the view point of local field theories, there exists a hidden dynamical field 1 in the RST model. Thanks to the presence of this hidden dynamical field, we can reconstruct the closed algebra of the constraints which guarantee the general invariance of the RST action. The resulting stress tensors TSigma Sigma are recovered to be true tensor quantities. Especially, the part of the stress tensors for the hidden dynamical field 1 gives the precise expression for tSigma . At the quantum level, the cancellation condition for the total central charge is reexamined. Finally, with the help of the hidden dynamical field 1, the fact that the semi-classical static soluti on of the RST model has two independent parameters (P,M), whereas for the classical CGHS model there is only one, can be explained.

We discuss the analytic properties of AdS scalar exchange graphs in the crossed channel. We show that the possible non-analytic terms drop out by virtue of non-trivial properties of generalized hypergeometric functions. The absence of non-analytic terms is a necessary condition for the existence of an operator product expansion for CFT amplitudes obtained from AdS/CFT correspondence.

The paper studies the dynamics of transitions between the levels of a Wannier-Stark ladder induced by a resonant periodic driving. The analysis of the problem is done in terms of resonance quasienergy states, which take into account the metastable character of the Wannier-Stark states. It is shown that the periodic driving creates from a localized Wannier-Stark state an extended Bloch-like state with a spatial length varying in time as ~ t^1/2. Such a state can find applications in the field of atomic optics because it generates a coherent pulsed atomic beam.

A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

The statistics of the resonance widths and the behavior of the survival probability is studied in a particular model of quantum chaotic scattering (a particle in a periodic potential subject to static and time-periodic forces) introduced earlier in Ref. [5,6]. The coarse-grained distribution of the resonance widths is shown to be in good agreement with the prediction of Random Matrix Theory (RMT). The behavior of the survival probability shows, however, some deviation from RMT.

We report on Brillouin light scattering investigations of the elastic properties in Co/Ni superlattices which exhibit localized electronic eigenstates near the Fermi level causing an oscillation of the resistivity as a function of the superlattice periodicity A. No oscillations of the Rayleigh and Sezawa mode as a function of A could be observed within an error margin of +- 2% indicating that the localized electronic states do not contribute to the elastic constants.

Abstract: It has recently been shown that the equation of motion of a massless scalar field in the background of some specific p branes can be reduced to a modified Mathieu equation. In the following the absorption rate of the scalar by a D3 brane in ten dimensions is calculated in terms of modified Mathieu functions of the first kind, using standard Mathieu coefficients. The relation of the latter to Dougall coefficients (used by others) is investigated. The S-matrix obtained in terms of modified Mathieu functions of the first kind is easily evaluated if known rapidly convergent low energy expansions of these in terms of products of Bessel functions are used. Leading order terms, including the interesting logarithmic contributions, can be obtained analytically.

Abstract: We develop a method of singularity analysis for conformal graphs which, in particular, is applicable to the holographic image of AdS supergravity theory. It can be used to determine the critical exponents for any such graph in a given channel. These exponents determine the towers of conformal blocks that are exchanged in this channel. We analyze the scalar AdS box graph and show that it has the same critical exponents as the corresponding CFT box graph. Thus pairs of external fields couple to the same exchanged conformal blocks in both theories. This is looked upon as a general structural argument supporting the Maldacena hypothesis.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

Annual Report 1997
(1998)

Annual Report 1998
(1999)

Annual Report 1999
(2000)

Annual Report 2000
(2001)

Annual Report 2001
(2002)