### Refine

#### Year of publication

- 2006 (14) (remove)

#### Document Type

- Preprint (14) (remove)

#### Keywords

- Approximation (2)
- Lokalisation (2)
- Multivariate Approximation (2)
- Sphäre (2)
- Spline (2)
- approximate identity (2)
- integer programming (2)
- Approximative Identität (1)
- Biorthogonalisation (1)
- CHAMP <Satellitenmission> (1)

#### Faculty / Organisational entity

In this paper a known orthonormal system of time- and space-dependent functions, that were derived out of the Cauchy-Navier equation for elastodynamic phenomena, is used to construct reproducing kernel Hilbert spaces. After choosing one of the spaces the corresponding kernel is used to define a function system that serves as a basis for a spline space. We show that under certain conditions there exists a unique interpolating or approximating, respectively, spline in this space with respect to given samples of an unknown function. The name "spline" here refers to its property of minimising a norm among all interpolating functions. Moreover, a convergence theorem and an error estimate relative to the point grid density are derived. As numerical example we investigate the propagation of seismic waves.

Linear and integer programs are considered whose coefficient matrices can be partitioned into K consecutive ones matrices. Mimicking the special case of K=1 which is well-known to be equivalent to a network flow problem we show that these programs can be transformed to a generalized network flow problem which we call semi-simultaneous (se-sim) network flow problem. Feasibility conditions for se-sim flows are established and methods for finding initial feasible se-sim flows are derived. Optimal se-sim flows are characterized by a generalization of the negative cycle theorem for the minimum cost flow problem. The issue of improving a given flow is addressed both from a theoretical and practical point of view. The paper concludes with a summary and some suggestions for possible future work in this area.

Selection of new projects is one of the major decision making activities in any company. Given a set of potential projects to invest, a subset which matches the company's strategy and internal resources best has to be selected. In this paper, we propose a multicriteria model for portfolio selection of projects, where we take into consideration that each of the potential projects has several - usually conflicting - values.

We present a constructive theory for locally supported approximate identities on the unit ball in \(\mathbb{R}^3\). The uniform convergence of the convolutions of the derived kernels with an arbitrary continuous function \(f\) to \(f\), i.e. the defining property of an approximate identity, is proved. Moreover, an explicit representation for a class of such kernels is given. The original publication is available at www.springerlink.com

Multileaf Collimators (MLC) consist of (currently 20-100) pairs of movable metal leaves which are used to block radiation in Intensity Modulated Radiation Therapy (IMRT). The leaves modulate a uniform source of radiation to achieve given intensity profiles. The modulation process is modeled by the decomposition of a given non-negative integer matrix into a non-negative linear combination of matrices with the (strict) consecutive ones property.

A translation contract is a binary predicate corrTransl(S,T) for source programs S and target programs T. It precisely specifies when T is considered to be a correct translation of S. A certifying compiler generates --in addittion to the target T-- a proof for corrTransl(S,T). Certifying compilers are important for the development of safety critical systems to establish the behavioral equivalence of high-level programs with their compiled assembler code. In this paper, we report on a certifying compiler, its proof techniques, and the underlying formal framework developed within the proof assistent Isabelle/HOL. The compiler uses a tiny C-like language as input, has an optimization phase, and generates MIPS code. The underlying translation contract is based on a trace semantics. We investigate design alternatives and discuss our experiences.

Connectedness of efficient solutions is a powerful property in multiple objective combinatorial optimization since it allows the construction of the complete efficient set using neighborhood search techniques. In this paper we show that, however, most of the classical multiple objective combinatorial optimization problems do not possess the connectedness property in general, including, among others, knapsack problems (and even several special cases of knapsack problems) and linear assignment problems. We also extend already known non-connectedness results for several optimization problems on graphs like shortest path, spanning tree and minimum cost flow problems. Different concepts of connectedness are discussed in a formal setting, and numerical tests are performed for different variants of the knapsack problem to analyze the likelihood with which non-connected adjacency graphs occur in randomly generated problem instances.

We introduce a method to construct approximate identities on the 2-sphere which have an optimal localization. This approach can be used to accelerate the calculations of approximations on the 2-sphere essentially with a comparably small increase of the error. The localization measure in the optimization problem includes a weight function which can be chosen under some constraints. For each choice of weight function existence and uniqueness of the optimal kernel are proved as well as the generation of an approximate identity in the bandlimited case. Moreover, the optimally localizing approximate identity for a certain weight function is calculated and numerically tested.

We show the numerical applicability of a multiresolution method based on harmonic splines on the 3-dimensional ball which allows the regularized recovery of the harmonic part of the Earth's mass density distribution out of different types of gravity data, e.g. different radial derivatives of the potential, at various positions which need not be located on a common sphere. This approximated harmonic density can be combined with its orthogonal anharmonic complement, e.g. determined out of the splitting function of free oscillations, to an approximation of the whole mass density function. The applicability of the presented tool is demonstrated by several test calculations based on simulated gravity values derived from EGM96. The method yields a multiresolution in the sense that the localization of the constructed spline basis functions can be increased which yields in combination with more data a higher resolution of the resulting spline. Moreover, we show that a locally improved data situation allows a highly resolved recovery in this particular area in combination with a coarse approximation elsewhere which is an essential advantage of this method, e.g. compared to polynomial approximation.

We consider optimal design problems for semiconductor devices which are simulated using the energy transport model. We develop a descent algorithm based on the adjoint calculus and present numerical results for a ballistic diode. Further, we compare the optimal doping profile with results computed on basis of the drift diffusion model. Finally, we exploit the model hierarchy and test the space mapping approach, especially the aggressive space mapping algorithm, for the design problem. This yields a significant reduction of numerical costs and programming effort.

This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.

Stop Location Design in Public Transportation Networks: Covering and Accessibility Objectives
(2006)

In StopLoc we consider the location of new stops along the edges of an existing public transportation network. Examples of StopLoc include the location of bus stops along some given bus routes or of railway stations along the tracks in a railway system. In order to measure the ''convenience'' of the location decision for potential customers in given demand facilities, two objectives are proposed. In the first one, we give an upper bound on reaching a closest station from any of the demand facilities and minimize the number of stations. In the second objective, we fix the number of new stations and minimize the sum of the distances between demand facilities and stations. The resulting two problems CovStopLoc and AccessStopLoc are solved by a reduction to a classical set covering and a restricted location problem, respectively. We implement the general ideas in two different environments - the plane, where demand facilities are represented by coordinates and in networks, where they are nodes of a graph.

Using covering problems (CoP) combined with binary search is a well-known and successful solution approach for solving continuous center problems. In this paper, we show that this is also true for center hub location problems in networks. We introduce and compare various formulations for hub covering problems (HCoP) and analyse the feasibility polyhedron of the most promising one. Computational results using benchmark instances are presented. These results show that the new solution approach performs better in most examples.

We study model reduction techniques for frequency averaging in radiative heat transfer. Especially, we employ proper orthogonal decomposition in combination with the method of snapshots to devise an automated a posteriori algorithm, which helps to reduce significantly the dimensionality for further simulations. The reliability of the surrogate models is tested and we compare the results with two other reduced models, which are given by the approximation using the weighted sum of gray gases and by an frequency averaged version of the so-called \(\mathrm{SP}_n\) model. We present several numerical results underlining the feasibility of our approach.