### Refine

#### Year of publication

- 2001 (30) (remove)

#### Document Type

- Preprint (22)
- Diploma Thesis (3)
- Doctoral Thesis (2)
- Lecture (2)
- Course Material (1)

#### Keywords

- Mathematikunterricht (3)
- Modellierung (3)
- praxisorientiert (3)
- Lineare Algebra (2)
- heat equation (2)
- stationary radiative transfer equation (2)
- Associative Memory Problem (1)
- Capacity (1)
- Earth' (1)
- Feed-forward Networks (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (30) (remove)

Fragestellungen der Standortplanung sollen den Mathematikunterricht der Schule bereichern, dort behandelt und gelöst werden. In dieser Arbeit werden planare Standortprobleme vorgestellt, die im Mathematikunterricht behandelt werden können. Die Probleme Produktion von Halbleiterplatinen, Planung eines Feuerwehrhauses und das Zentrallagerproblem, die ausnahmlos real und nicht konstruiert sind, werden ausführlich durchgearbeitet, so dass es schnell möglich ist, daraus Unterrichtseinheiten zu entwickeln.

The study of families of curves with prescribed singularities has a long tradition. Its foundations were laid by Plücker, Severi, Segre, and Zariski at the beginning of the 20th century. Leading to interesting results with applications in singularity theory and in the topology of complex algebraic curves and surfaces it has attained the continuous attraction of algebraic geometers since then. Throughout this thesis we examine the varieties V(D,S1,...,Sr) of irreducible reduced curves in a fixed linear system |D| on a smooth projective surface S over the complex numbers having precisely r singular points of types S1,...,Sr. We are mainly interested in the following three questions: 1) Is V(D,S1,...,Sr) non-empty? 2) Is V(D,S1,...,Sr) T-smooth, that is smooth of the expected dimension? 3) Is V(D,S1,...Sr) irreducible? We would like to answer the questions in such a way that we present numerical conditions depending on invariants of the divisor D and of the singularity types S1,...,Sr, which ensure a positive answer. The main conditions which we derive will be of the type inv(S1)+...+inv(Sr) < aD^2+bD.K+c, where inv is some invariant of singularity types, a, b and c are some constants, and K is some fixed divisor. The case that S is the projective plane has been very well studied by many authors, and on other surfaces some results for curves with nodes and cusps have been derived in the past. We, however, consider arbitrary singularity types, and the results which we derive apply to large classes of surfaces, including surfaces in projective three-space, K3-surfaces, products of curves and geometrically ruled surfaces.

Mit der vorliegenden Veröffentlichung soll der Versuch unternommen werden, mathematischen Schulstoff aus konkreten Problemen herzuentwickeln. Im Mittelpunkt der vorliegenden Arbeit stehen betriebswirtschaftliche Planungs- und Entscheidungsprobleme, wie sie von fast allen Wirtschaftsunternehmen zu lösen sind. Dabei wird im besonderen auf folgende Optimierungsprobleme eingegangen: Berechnung des Rohstoffbedarfs bei gegebenen Bestellungen, Aufarbeitung von vorhandenen Lagerbeständen und das Stücklistenproblem.

Matrices with the consecutive ones property and interval graphs are important notations in the field of applied mathematics. We give a theoretical picture of them in first part. We present the earliest work in interval graphs and matrices with the consecutive ones property pointing out the close relation between them. We pay attention to Tucker's structure theorem on matrices with the consecutive ones property as an essential step that requires a deep considerations. Later on we concentrate on some recent work characterizing the matrices with the consecutive ones property and matrices related to them in the terms of interval digraphs as the latest and most interesting outlook on our topic. Within this framework we introduce a classiffcation of matrices with consecutive ones property and matrices related to them. We describe the applications of matrices with the consecutive ones property and interval graphs in different fields. We make sure to give a general view of application and their close relation to our studying phenomena. Sometimes we mention algorithms that work in certain fields. In the third part we give a polyhedral approach to matrices with the consecutive ones property. We present the weighted consecutive ones problem and its relation to Tucker's matrices. The constraints of the weighted consecutive ones problem are improved by introducing stronger inequalities, based on the latest theorems on polyhedral aspect of consecutive ones property. Finally we implement a separation algorithm of Oswald and Reinhelt on matrices with the consecutive ones property. We would like to mention that we give a complete proof to the theorems when we consider important within our framework. We prove theorems partially when it is worthwhile to have a closer look, and we omit the proof when there are is only an intersection with our studying phenomena.

In this article, we investigate the maximum entropy moment closure in gas dynamics. We show that the usual choice of polynomial weight functions may lead to hyperbolic systems with an unpleasant state space: equilibrium states are boundary points with possibly singular fluxes. In order to avoid singularities, the necessary arises to find weight functions which growing sub-quadratically at infinity. Unfortunately, this requirement leads to a conflict with Galilean invariance of the moment systems because we can show that rotational and translational invariant, finite dimensional function spaces necessarily consist of polynomials.

Lineare Optimierung ist ein wichtiges Aufgabengebiet der angewandten Mathematik, da sich viele praktische Probleme mittels dieser Technik modellieren und lösen lassen. Diese Veröffentlichung soll helfen, Schüler an diese Thematik heranzuführen. Dabei soll der Vorgang des Modellierens, also die Reduktion des Problems auf die wesentlichen Merkmale, vermittelt werden. Anschließend an den Modellierungsprozeß können durch Einsatz der Simplex-Methode die linearen Optimierungsprobleme gelöst werden. Verschiedene praktische Beispiele dienen der Veranschaulichung des Vorgehens.

A natural extension of point facility location problems are those problems in which facilities are extensive, i.e. those that can not be represented by isolated points but as some dimensional structures such as straight lines, segments of lines, polygonal curves or circles. In this paper a review of the existing work on the location of extensive facilities in continuous spaces is given. Gaps in the knowledge are identified and suggestions for further research are made.

Satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG), respectively, are two measurement principles in modern satellite geodesy which yield knowledge of the first and second order radial derivative of the earth's gravitational potential at satellite altitude, respectively. A numerical method to compute the gravitational potential on the earth's surface from those observations should be capable of processing huge amounts of observational data. Moreover, it should yield a reconstruction of the gravitational potential at different levels of detail, and it should be possible to reconstruct the gravitational potential from only locally given data. SST and SGG are modeled as ill-posed linear pseudodifferential operator equations with an injective but non-surjective compact operator, which operates between Sobolev spaces of harmonic functions and such ones consisting of their first and second order radial derivatives, respectively. An immediate discretization of the operator equation is obtained by replacing the signal on its right-hand-side either by an interpolating or a smoothing spline which approximates the observational data. Here the noise level and the spatial distribution of the data determine whether spline-interpolation or spline-smoothing is appropriate. The large full linear equation system with positive definite matrix which occurs in the spline-interplation and spline-smoothing problem, respectively, is efficiently solved with the help of the Schwarz alternating algorithm, a domain decomposition method which allows it to split the large linear equation system into several smaller ones which are then solved alernatingly in an iterative procedure. Strongly space-localizing regularization scaling functions and wavelets are used to obtain a multiscale reconstruction of the gravitational potential on the earth's surface. In a numerical experiment the advocated method is successfully applied to reconstruct the earth's gravitational potential from simulated 'exact' and 'error-affected' SGG data on a spherical orbit, using Tikhonov regularization. The applicability of the numerical method is, however, not restricted to data given on a closed orbit but it can also cope with realistic satellite data.

Given a railway network together with information on the population and their use of the railway infrastructure, we are considering the e ffects of introducing new train stops in the existing railway network. One e ffect concerns the accessibility of the railway infrastructure to the population, measured in how far people live from their nearest train stop. The second effect we study is the change in travel time for the railway customers that is induced by new train stops. Based on these two models, we introduce two combinatorial optimization problems and give NP-hardness results for them. We suggest an algorithmic approach for the model based on travel time and give first experimental results.

Abstract: The basic concepts of selective multiscale reconstruction of functions on the sphere from error-affected data is outlined for scalar functions. The selective reconstruction mechanism is based on the premise that multiscale approximation can be well-represented in terms of only a relatively small number of expansion coefficients at various resolution levels. A new pyramid scheme is presented to efficiently remove the noise at different scales using a priori statistical information.

Abstract: Evacuation problems can be modeled as flow problems in dynamic networks. A dynamic network is defined by a directed graph G = (N,A) with sources, sinks and non-negative integral travel times and capacities for every arc (i,j) e A. The earliest arrival flow problem is to send a maximum amount of dynamic flow reaching the sink not only for the given time horizon T, but also for any time T' < T . This problem mimics the evacuation problem of public buildings where occupancies may not known. For the buildings where the number of occupancies is known and concentrated only in one source, the quickest flow model is used to find the minimum egress time. We propose in this paper a solution procedure for evacuation problems with a single source of the building where the occupancy number is either known or unknown. The possibility that the flow capacity may change due to the increasing of smoke density or fire obstructions can be mirrored in our model. The solution procedure looks iteratively for the shortest conditional augmenting path (SCAP) from source to sink and compute the time intervals in which flow reaches the sink via this path.

The anchored hyperplane location problem is to locate a hyperplane passing through some given points P IR^n and minimizing either the sum of weighted distances (median problem), or the maximum weighted distance (center problem) to some other points Q IR^n . If the distances are measured by a norm, it will be shown that in the median case there exists an optimal hyperplane that passes through at least n - k affinely independent points of Q, if k is the maximum number of affinely independent points of P. In the center case, there exists an optimal hyperplane which isatmaximum distance to at least n - k + 1 affinely independent points of Q. Furthermore, if the norm is a smooth norm, all optimal hyperplanes satisfy these criteria. These new results generalize known results about unrestricted hyperplane location problems.

The purpose of satellite-to-satellite tracking (SST) and/or satellite gravity gradiometry (SGG) is to determine the gravitational field on and outside the Earth's surface from given gradients of the gravitational potential and/or the gravitational field at satellite altitude. In this paper both satellite techniques are analysed and characterized from mathematical point of view. Uniqueness results are formulated. The justification is given for approximating the external gravitational field by finite linear combination of certain gradient fields (for example, gradient fields of single-poles or multi-poles) consistent to a given set of SGG and/or SST data. A strategy of modelling the gravitational field from satellite data within a multiscale concept is described; illustrations based on the EGM96 model are given.