### Refine

#### Year of publication

- 1999 (131) (remove)

#### Document Type

- Preprint (121)
- Article (4)
- Lecture (3)
- Study Thesis (2)
- Diploma Thesis (1)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Mathematik (131) (remove)

Location problems with Q (in general conflicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exemplified using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found efficiently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.

In this paper we deal with locating a line in the plane. If d is a distance measure our objective is to find a straight line l which minimizes f(l) of g(l) (see the paper for the definition of these functions). We show that for all distance measures d derived from norms, one of the lines minimizing f(l) contains at least two of the existing facilities. For the center objective we always get an optimal line which is at maximum distance from at least three of the existing facilities. If all weights are equal, there is an optimal line which is parallel to one facet of the convex hull of the existing facilities.

In this paper relationships between Pareto points and saddle points in multiple objective programming are investigated. Convex and nonconvex problems are considered and the equivalence between Pareto points and saddle points is proved in both cases. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. Partitions of the index sets of objectives and constranints are introduced to reduce the size of the problems. The relevance of the results in the context of decision making is also discussed.

Discrete Decision Problems, Multiple Criteria Optimization Classes and Lexicographic Max-Ordering
(1999)

The topic of this paper are discrete decision problems with multiple criteria. We first define discrete multiple criteria decision problems and introduce a classification scheme for multiple criteria optimization problems. To do so we use multiople criteria optimization classes. The main result is a characterization of the class of lexicographic max-ordering problems by two very useful properties, reduction and regularity. Subsequently we discuss the assumptions under which the application of this specific MCO class is justified. Finally we provide (simple) solution methods to find optimal decisions in the case of discrete multiple criteria optimization problems.

In line location problems the objective is to find a straight line which minimizes the sum of distances, or the maximum distance, respectively to a given set of existing facilities in the plane. These problems have well solved. In this paper we deal with restricted line location problems, i.e. we have given a set in the plane where the line is not allowed to pass through. With the help of a geometric duality we solve such problems for the vertical distance and then extend these results to block norms and some of them even to arbitrary norms. For all norms we give a finite candidate set for the optimal line.

In this survey we deal with the location of hyperplanes in n-dimensional normed spaces, i.e., we present all known results and a unifying approach to the so-called median hyperplane problem in Minkowski spaces. We describe how to find a hyperplane H minimizing the weighted sum f(H) of distances to a given, finite set of demand points. In robust statistics and operations research such an optimal hyperplane is called a median hyperplane.After summarizing the known results for the Euclidean and rectangular situation, we show that for all distance measures d derived from norms one of the hyperplanes minimizing f(H) is the affine hull of n of the demand points and, moreover, that each median hyperplane is a halving one (in a sense defined below) with respect to the geiven point set. Also an independence of norm result for finding optimal hyperplanes with fixed slope will be given. Furthermore we discuss how these geometric criteria can be used for algorithmical approaches to median hyperplanes, with an extra discussion for the case of polyhedral norms. And finally a characterizatio of all smooth norms by a sharpened incidence criterion for median hyperplanes is mentioned.

In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions

Ramsey Numbers of K_m versus (n,k)-graphs and the Local Density of Graphs not Containing a K_m
(1999)

In this paper generalized Ramsey numbers of complete graphs K_m versus the set langle ,n,k angle of (n,k)-graphs are investigated. The value of r(K_m,langle n,k angle) is given in general for (relative to n) values of k small compared to n using a correlation with Turan numbers. These generalized Ramsey numbers con be used to determine the local densities of graphs not containing a subgraph K_m.

The Weber problem for a given finite set of existing facilities {cal E}x = {Ex_1,Ex_2, ... ,Ex_M} subset R^2 with positive weights w_m (m = 1, ... ,M) is to find a new facility X* in R^2 such that sum_{m=1}^{M} w_{m}d(X,Ex_m) is minimized for some distance function d. In this paper we consider distances defined by polyhedral gauges. A variation of this problem is obtained if barriers are introduced which are convex polygonal subsets of the plane where neither location of new facilities nor traveling is allowed. Such barriers like lakes, military regions, national parks or mountains are frequently encountered in practice.From a mathematical point of view barrier problems are difficult, since the prensence of barriers destroys the convexity of the objective function. Nevertheless, this paper establishes a descretization result: One of the grid points in the grid defined by the existing facilities and the fuundamental directions of the gauge distances can be proved to be an optimal location. Thus the barrier problem can be solved with a polynomial algorithm.

Kernel smoothing in nonparametric autoregressive schemes offers a powerful tool in modelling time series. In this paper it is shown that the bootstrap can be used for estimating the distribution of kernel smoothers. This can be done by mimicking the stochastic nature of the whole process in the bootstrap resampling or by generating a simple regression model. Consistency of these bootstrap procedures will be shown.

In this paper we consider generalizations of multifacility location problems in which as an additional constraint the new facilities are not allowed to be located in a presprcified region. We propose several different solution schemes for this non-convex optimization problem. These include a linear programming type approach, penalty approaches and barrier approaches. Moreover, structural results as well as illustratrive examples showing the difficulties of this problem are presented

To present the decision maker's (DM) preferences in multicriteria decision problems as a partially ordered set is an effective method to catch the DM's purpose and avoid misleading results. Since our paper is focused on minimal path problems, we regard the ordered set of edges (E,=). Minimal paths are defined in repect to power-ordered sets which provides an essential tool to solve such problems. An algorithm to detect minimal paths on a multicriteria minimal path problem is presented

Let P be a probability measure of the real line R such that each of the product measures P^{otimes n} assigns the value 1/2 to every half space in R^{n} having the origin as a boundary point. Then P is symmetric.Example: A strictly stable law on R is symmetric iff it has median zero. The treated symmetry problem is related to the problem of characterizing the distribution of X_1 by the distribution of (X_2 + X_1, ... ,X_n + X_1), with X_1, ... ,X_n being independent and identically distributed random variables.

In continous location problems we are given a set of existing facilities and we are looking for the location of one or several new facilities. In the classical approaches weights are assigned to existing facilities expressing the importance of the new facilities for the existing ones. In this paper, we consider a pointwise defined objective function where the weights are assigned to the existing facilities depending on the location of the new facility. This approach is shown to be a generalization of the median, center and centdian objective functions. In addition, this approach allows to formulate completely new location models. Efficient algorithms as well as structure results for this algebraic approach for location problems are presented. Extensions to the multifacility and restricted case are also considered.

In this paper we consider the problem of optimizing a piecewise-linear objective function over a non-convex domain. In particular we do not allow the solution to lie in the interior of a prespecified region R. We discuss the geometrical properties of this problems and present algorithms based on combinatorial arguments. In addition we show how we can construct quite complicated shaped sets R while maintaining the combinatorial properties.

In this paper we deal with the determination of the whole set of Pareto-solutions of location problems with respect to Q general criteria. These criteria include as particular instances median, center or cent-dian objective functions. The paper characterizes the set of Pareto-solutions of all these multicriteria problems. An efficient algorithm for the planar case is developed and its complexity is established. the proposed approach is more general than the previously published approaches to multicriteria location problems and includes almost all of them as particular instances.

The computational complexity of combinatorial multiple objective programming problems is investigated. NP-completeness and #P-completeness results are presented. Using two definitions of approximability, general results are presented, which outline limits for approximation algorithms. The performance of the well known tree and Christofides' heuristics for the TSP is investigated in the multicriteria case with respect to the two definitions of approximability.

Convex Operators in Vector Optimization: Directional Derivatives and the Cone of Decrease Directions
(1999)

The paper is devoted to the investigation of directional derivatives and the cone of decrease directions for convex operators on Banach spaces. We prove a condition for the existence of directional derivatives which does not assume regularity of the ordering cone K. This result is then used to prove that for continuous convex operators the cone of decrease directions can be represented in terms of the directional derivatices . Decrease directions are those for which the directional derivative lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the convex operator can be replaced by its K-boundedness.

The notion of the balance number introduced in [3,page 139] through a certain set contraction procedure for nonscalarized multiobjective global optimization is represented via a min-max operation on the data of the problem. This representation yields a different computational procedure for the calculation of the balance number and allows us to generalize the approach for problems with countably many performance criteria.