### Refine

#### Year of publication

#### Document Type

- Preprint (1033)
- Doctoral Thesis (619)
- Report (399)
- Article (182)
- Conference Proceeding (26)
- Diploma Thesis (22)
- Periodical Part (21)
- Working Paper (12)
- Master's Thesis (11)
- Lecture (7)

#### Language

- English (2354) (remove)

#### Keywords

- AG-RESY (47)
- PARO (25)
- SKALP (15)
- Visualisierung (13)
- Wavelet (13)
- Case-Based Reasoning (11)
- Inverses Problem (11)
- RODEO (11)
- Mehrskalenanalyse (10)
- finite element method (10)

#### Faculty / Organisational entity

- Fachbereich Mathematik (939)
- Fachbereich Informatik (650)
- Fachbereich Physik (239)
- Fraunhofer (ITWM) (203)
- Fachbereich Maschinenbau und Verfahrenstechnik (110)
- Fachbereich Elektrotechnik und Informationstechnik (78)
- Fachbereich Chemie (58)
- Fachbereich Biologie (33)
- Fachbereich Sozialwissenschaften (22)
- Fachbereich Wirtschaftswissenschaften (12)

Partitioned chain grammars
(1979)

This paper introduces a new class of grammars, the partitioned chain grammars, for which efficient parsers can be automatically generated. Besides being efficiently parsable these grammars possess a number of other properties, which make them very attractive for the use in parser-generators. They for instance form a large grammarclass and describe all deterministic context-free languages. Main advantage of the partitioned chain grammars however is, that given a language it is usually easier to describe it by a partitioned chain grammar than to construct a grammar of some other type commonly used in parser-generators for it.

Fast reconstruction formulae in x-ray computerized tomography demand the directions, in which the measurements are taken, to be equally distributed over the whole circle. In many applications data can only be provided in a restricted range. Here the intrinsic difficulties are studied by giving a singular value decomposition of the Radon transform in a restricted range. Practical limitations are deduced.

The Trippstadt Problem
(1984)

Close to Kaiserslautern is the town of Trippstadt, which, together with five other small towns forms a local administration unit (Verbandsgemeinde) called Kaiserslautern-Süd. Trippstadt has its own beautiful public swimming pool, which causes problems though; the cost for the upkeep of the pool is higher than the income and thus has to be divided among the towns belonging to the Verbandsgemeinde. Because of this problem the administration wanted to find out which fraction of the total number of pool visitors came from the different towns. They planned to ask each pool guest where he came from. They did this for only three days though because the waiting lines at the cashiers became unbearably long and they could see that because of this the total number of guests would decrease. Then they wondered how to find a better method to get the same data and that was when I was asked to help with the solution of the problem.

In these notes we will discuss some aspects of a problem arising in carindustry. For the sake of clarity we will set the problem into an extremely simplified scheme. Suppose that we have a body which is emitting sound, and that the sound is measured at a finite number of points around the body. We wish to determine the intensity of the sound at an observation point which is moving.

We report on the exchange bias effect as a function of the in-plane direction of the applied field in two-fold symmetric, epitaxial Ni80Fe20/Fe50Mn50 bilayers grown on Cu(110) single crystal substrates. An enhancement of the exchange bias field, Heb, up to a factor of two is observed if the external field is nearly, but not fully aligned perpendicular to the symmetry direction of the exchange bias field. From the measurement of the ex-change bias field as a function of the in-plane angle of the applied field, the unidirectional, uniaxial and four-fold anisotropy contributions are determined with high precision. The symmetry direction of the unidirec-tional anisotropy switches with increasing NiFe thickness from [110] to [001].

We want to study solid objects in real three dimensional space aiming at two issues:; (i1) modelling solids subject to boolean set algebra, including wire models,; (i2) determining the behaviour of moving solids, e.g. when they collide and the resulting points of contact.; ; This research has been initiated by the FORD Motor Company, Cologne. It is motivated by the intention to provide for a model of an automatical car gear, which gives a high precision basis to the optimization of moving tolerances.

Estimation of P(R kl/gleich S) is considered for the simple stress-strength model of failure. Using the Pareto and Power distributions together with their combined form a useful parametric solution is obtained and is illustrated numerically. It is shown that these models are also applicable when only the tails of distributions for R and S are considered. An application to the failure study concerning the fractures is also included.

Stability and Robustness Properties of Universal Adaptive Controllers for First Order Linear Systems
(1987)

The question: What is an adaptive controller? is as old as the word adaptive control itself. In this paper we will adopt a pragmatic viewpoint which identifies adaptive controllers with nonlinear feedback controllers, designed for classes (families) of linear systems. In contrast to classical linear feedback controllers which are designed for individual systems, these non-linear controllers are required to achieve a specific design objective (such as e.g. stability, tracking or decoupling) for a whole prescribed family of linear systems.

Patterns are considered as normalized measures and distances between them are defined as distances of the corresponding measures using metrics in measure spaces. This idea can be applied for pattern recognition if smeared patterns have to be compared with given ideal patterns. Different metrics are sensitive to different characteristics of the patterns - this is demonstrated in discussing examples. Particular attention is paid to a problem of Quality Control for an artificial fabric, where the distance to uniformity is defined and evaluated; the results are now used in industry.

As shown by Krasnosel" skii, the classical Preisach model allows to construct a hysteresis operator Wbetween spaces of real functions of time. This construction, via the definition of a measure mü in the so-called Preisach plane, is recalled. Characterizations in terms of mü are given for several mapping and continuity properties of W in various function spaces, for the invertibility of W and for the corresponding mapping and continuity properties of the inverse.

The performance of a combustion engine is essentially determined by the charge cycle, i.e. by the inflow of fresh air through the inlet pipe into the cylinder after a combustion cycle. The amount of air, exchanged during this process, depends on many factors, e.g. the number of revolutions per minute, the temperature, the engine and valve geometry. In order to have a tool in designing the engine one is interested in calculating this amount. The proper calculation would involve the solution of three-dimensional hydrodynamical equations governing the gas flow including chemical reactions in a complicated geometry, consisting of the cylinder, valves, inlet and outlet pipe. Since this is clearly too ambitious, we consider a simplified model.

As an alternative to the commonly used Monte Carlo Simulation methods for solving the Boltzmann equation we have developed a new code with certain important improvements. We present results of calculations on the reentry phase of a space shuttle. One aim was to test physical models of internal energies and of gas-surface interactions.

We present the concept of a universal adaptive tracking controller for classes of linear systems. For the class of scalar minimum phase systems of relative degree one, adaptive tracking is shown for arbitrary finite dimensional reference signals. The controller requires no identificaiton of the system parameters. Robustness properties are explored.