### Refine

#### Year of publication

#### Has Fulltext

- yes (18) (remove)

#### Keywords

- Inverses Problem (4)
- Mehrskalenanalyse (4)
- Kugel (3)
- Spline (3)
- Approximation (2)
- CHAMP <Satellitenmission> (2)
- Cauchy-Navier equation (2)
- Cauchy-Navier-Gleichung (2)
- GOCE <Satellitenmission> (2)
- GRACE <Satellitenmission> (2)

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.

Two possible substitutes of the Fourier transform in geopotential determination are windowed Fourier transform (WFT) and wavelet transform (WT). In this paper we introduce harmonic WFT and WT and show how it can be used to give information about the geopotential simultaneously in the space domain and the frequency (angular momentum) domain. The counterparts of the inverse Fourier transform are derived, which allow us to reconstruct the geopotential from its WFT and WT, respectively. Moreover, we derive a necessary and sufficient condition that an otherwise arbitrary function of space and frequency has to satisfy to be the WFT or WT of a potential. Finally, least - squares approximation and minimum norm (i.e. least - energy) representation, which will play a particular role in geodetic applications of both WFT and WT, are discussed in more detail.

We introduce splines for the approximation of harmonic functions on a 3-dimensional ball. Those splines are combined with a multiresolution concept. More precisely, at each step of improving the approximation we add more data and, at the same time, reduce the hat-width of the used spline basis functions. Finally, a convergence theorem is proved. One possible application, that is discussed in detail, is the reconstruction of the Earth´s density distribution from gravitational data obtained at a satellite orbit. This is an exponentially ill-posed problem where only the harmonic part of the density can be recovered since its orthogonal complement has the potential 0. Whereas classical approaches use a truncated singular value decomposition (TSVD) with the well-known disadvantages like the non-localizing character of the used spherical harmonics and the bandlimitedness of the solution, modern regularization techniques use wavelets allowing a localized reconstruction via convolutions with kernels that are only essentially large in the region of interest. The essential remaining drawback of a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which is not given in reality. Thus, simplifying modelling assumptions, that certainly include a modelling error, have to be made. The splines introduced here have the important advantage, that the given data need not be located on a sphere but may be (almost) arbitrarily distributed in the outer space of the Earth. This includes, in particular, the possibility to mix data from different satellite missions (different orbits, different derivatives of the gravitational potential) in the calculation of the Earth´s density distribution. Moreover, the approximating splines can be calculated at varying resolution scales, where the differences for increasing the resolution can be computed with the introduced spline-wavelet technique.

We introduce a method to construct approximate identities on the 2-sphere which have an optimal localization. This approach can be used to accelerate the calculations of approximations on the 2-sphere essentially with a comparably small increase of the error. The localization measure in the optimization problem includes a weight function which can be chosen under some constraints. For each choice of weight function existence and uniqueness of the optimal kernel are proved as well as the generation of an approximate identity in the bandlimited case. Moreover, the optimally localizing approximate identity for a certain weight function is calculated and numerically tested.

This review article reports current activities and recent progress on constructive approximation and numerical analysis in physical geodesy. The paper focuses on two major topics of interest, namely trial systems for purposes of global and local approximation and methods for adequate geodetic application. A fundamental tool is an uncertainty principle, which gives appropriate bounds for the quantification of space and momentum localization of trial functions. The essential outcome is a better understanding of constructive approximation in terms of radial basis functions such as splines and wavelets.

The satellite-to-satellite tracking (SST) problems are characterized from mathematical point of view. Uniqueness results are formulated. Moreover, the basic relations are developed between (scalar) approximation of the earth's gravitational potential by "scalar basis systems" and (vectorial) approximation of the gravitational eld by "vectorial basis systems". Finally, the mathematical justication is given for approximating the external geopotential field by finite linear combinations of certain gradient fields (for example, gradient fields of multi-poles) consistent to a given set of SST data.

The original publication is available at www.springerlink.com. This original publication also contains further results. We study a spherical wave propagating in radius- and latitude-direction and oscillating in latitude-direction in case of fibre-reinforced linearly elastic material. A function system solving Euler's equation of motion in this case and depending on certain Bessel and associated Legendre functions is derived.