### Refine

#### Year of publication

- 2016 (153) (remove)

#### Document Type

- Doctoral Thesis (92)
- Conference Proceeding (14)
- Periodical Part (13)
- Article (10)
- Preprint (7)
- Part of a Book (4)
- Working Paper (4)
- Master's Thesis (3)
- Book (2)
- Bachelor Thesis (1)

#### Language

- English (80)
- German (72)
- Multiple languages (1)

#### Keywords

- Stadtplanung (8)
- MINT (5)
- Mathematische Modellierung (5)
- Schule (4)
- Cache (3)
- SRAM (3)
- DRAM (2)
- Gentoxizität (2)
- Hochschulforschung (2)
- PIM (2)

#### Faculty / Organisational entity

- Fachbereich Mathematik (28)
- Fachbereich Informatik (25)
- Fachbereich Chemie (17)
- Fachbereich Elektrotechnik und Informationstechnik (17)
- Fachbereich Maschinenbau und Verfahrenstechnik (14)
- Fachbereich Sozialwissenschaften (14)
- Fachbereich Raum- und Umweltplanung (12)
- Fachbereich Bauingenieurwesen (6)
- Universität (6)
- Fachbereich Biologie (5)

3D integration of solid-state memories and logic, as demonstrated by the Hybrid Memory Cube (HMC), offers major opportunities for revisiting near-memory computation and gives new hope to mitigate the power and performance losses caused by the “memory wall”. In this paper we present the first exploration steps towards design of the Smart Memory Cube (SMC), a new Processor-in-Memory (PIM) architecture that enhances the capabilities of the logic-base (LoB) in HMC. An accurate simulation environment has been developed, along with a full featured software stack. All offloading and dynamic overheads caused by the operating system, cache coherence, and memory management are considered, as well. Benchmarking results demonstrate up to 2X performance improvement in comparison with the host SoC, and around 1.5X against a similar host-side accelerator. Moreover, by scaling down the voltage and frequency of PIM’s processor it is possible to reduce energy by around 70% and 55% in comparison with the host and the accelerator, respectively.

A counter-based read circuit tolerant to process variation for low-voltage operating STT-MRAM
(2016)

The capacity of embedded memory on LSIs has kept increasing. It is important to reduce the leakage power of embedded memory for low-power LSIs. In fact, the ITRS predicts that the leakage power in embedded memory will account for 40% of all power consumption by 2024 [1]. A spin transfer torque magneto-resistance random access memory (STT-MRAM) is promising for use as non-volatile memory to reduce the leakage power. It is useful because it can function at low voltages and has a lifetime of over 1016 write cycles [2]. In addition, the STT-MRAM technology has a smaller bit cell than an SRAM. Making the STT-MRAM is suitable for use in high-density products [3–7]. The STT-MRAM uses magnetic tunnel junction (MTJ). The MTJ has two states: a parallel state and an anti-parallel state. These states mean that the magnetization direction of the MTJ’s layers are the same or different. The directions pair determines the MTJ’s magneto- resistance value. The states of MTJ can be changed by the current flowing. The MTJ resistance becomes low in the parallel state and high in the anti-parallel state. The MTJ potentially operates at less than 0.4 V [8]. In other hands, it is difficult to design peripheral circuitry for an STT-MRAM array at such a low voltage. In this paper, we propose a counter-based read circuit that functions at 0.4 V, which is tolerant of process variation and temperature fluctuation.

This thesis presents a novel, generic framework for information segmentation in document images.
A document image contains different types of information, for instance, text (machine printed/handwritten), graphics, signatures, and stamps.
It is necessary to segment information in documents so that to process such segmented information only when required in automatic document processing workflows.
The main contribution of this thesis is the conceptualization and implementation of an information segmentation framework that is based on part-based features.
The generic nature of the presented framework makes it applicable to a variety of documents (technical drawings, magazines, administrative, scientific, and academic documents) digitized using different methods (scanners, RGB cameras, and hyper-spectral imaging (HSI) devices).
A highlight of the presented framework is that it does not require large training sets, rather a few training samples (for instance, four pages) lead to high performance, i.e., better than previously existing methods.
In addition, the presented framework is simple and can be adapted quickly to new problem domains.
This thesis is divided into three major parts on the basis of document digitization method (scanned, hyper-spectral imaging, and camera captured) used.
In the area of scanned document images, three specific contributions have been realized.
The first of them is in the domain of signature segmentation in administrative documents.
In some workflows, it is very important to check the document authenticity before processing the actual content.
This can be done based on the available seal of authenticity, e.g., signatures.
However, signature verification systems expect pre-segmented signature image, while signatures are usually a part of document.
To use signature verification systems on document images, it is necessary to first segment signatures in documents.
This thesis shows that the presented framework can be used to segment signatures in administrative documents.
The system based on the presented framework is tested on a publicly available dataset where it outperforms the state-of-the-art methods and successfully segmented all signatures, while less than half of the found signatures are false positives.
This shows that it can be applied for practical use.
The second contribution in the area of scanned document images is segmentation of stamps in administrative documents.
A stamp also serves as a seal for documents authenticity.
However, the location of stamp on the document can be more arbitrary than a signature depending on the person sealing the document.
This thesis shows that a system based on our generic framework is able to extract stamps of any arbitrary shape and color.
The evaluation of the presented system on a publicly available dataset shows that it is also able to segment black stamps (that were not addressed in the past) with a recall and precision of 83% and 73%, respectively.
%Furthermore, to segment colored stamps, this thesis presents a novel feature set which is based on intensity gradient, is able to extract unseen, colored, arbitrary shaped, textual as well as graphical stamps, and outperforms the state-of-the-art methods.
The third contribution in the scanned document images is in the domain of information segmentation in technical drawings (architectural floorplans, maps, circuit diagrams, etc.) containing usually a large amount of graphics and comparatively less textual components. Further, as in technical drawings, text is overlapping with graphics.
Thus, automatic analysis of technical drawings uses text/graphics segmentation as a pre-processing step.
This thesis presents a method based on our generic information segmentation framework that is able to detect the text, which is touching graphical components in architectural floorplans and maps.
Evaluation of the method on a publicly available dataset of architectural floorplans shows that it is able to extract almost all touching text components with precision and recall of 71% and 95%, respectively.
This means that almost all of the touching text components are successfully extracted.
In the area of hyper-spectral document images, two contributions have been realized.
Unlike normal three channels RGB images, hyper-spectral images usually have multiple channels that range from ultraviolet to infrared regions including the visible region.
First, this thesis presents a novel automatic method for signature segmentation from hyper-spectral document images (240 spectral bands between 400 - 900 nm).
The presented method is based on a part-based key point detection technique, which does not use any structural information, but relies only on the spectral response of the document regardless of ink color and intensity.
The presented method is capable of segmenting (overlapping and non-overlapping) signatures from varying backgrounds like, printed text, tables, stamps, logos, etc.
Importantly, the presented method can extract signature pixels and not just the bounding boxes.
This is substantial when signatures are overlapping with text and/or other objects in image. Second, this thesis presents a new dataset comprising of 300 documents scanned using a high-resolution hyper-spectral scanner. Evaluation of the presented signature segmentation method on this hyper-spectral dataset shows that it is able to extract signature pixels with the precision and recall of 100% and 79%, respectively.
Further contributions have been made in the area of camera captured document images. A major problem in the development of Optical Character Recognition (OCR) systems for camera captured document images is the lack of labeled camera captured document images datasets. In the first place, this thesis presents a novel, generic, method for automatic ground truth generation/labeling of document images. The presented method builds large-scale (i.e., millions of images) datasets of labeled camera captured / scanned documents without any human intervention. The method is generic and can be used for automatic ground truth generation of (scanned and/or camera captured) documents in any language, e.g., English, Russian, Arabic, Urdu. The evaluation of the presented method, on two different datasets in English and Russian, shows that 99.98% of the images are correctly labeled in every case.
Another important contribution in the area of camera captured document images is the compilation of a large dataset comprising 1 million word images (10 million character images), captured in a real camera-based acquisition environment, along with the word and character level ground truth. The dataset can be used for training as well as testing of character recognition systems for camera-captured documents. Various benchmark tests are performed to analyze the behavior of different open source OCR systems on camera captured document images. Evaluation results show that the existing OCRs, which already get very high accuracies on scanned documents, fail on camera captured document images.
Using the presented camera-captured dataset, a novel character recognition system is developed which is based on a variant of recurrent neural networks, i.e., Long Short Term Memory (LSTM) that outperforms all of the existing OCR engines on camera captured document images with an accuracy of more than 95%.
Finally, this thesis provides details on various tasks that have been performed in the area closely related to information segmentation. This includes automatic analysis and sketch based retrieval of architectural floor plan images, a novel scheme for online signature verification, and a part-based approach for signature verification. With these contributions, it has been shown that part-based methods can be successfully applied to document image analysis.

Die Forschung zum amerikanischen Exzeptionalismus als Teil der kollektiven
Identität der USA lässt eine systematische Einordnung der
exzeptionellen Selbstzuschreibungen der USA im Kontext militärischer
Interventionspolitik bisher weitgehend vermissen. Basierend auf den beiden
grundlegenden Dimensionen einer exemplarischen und einer missionarischen
Selbstzuschreibung werden in dieser Studie vier Idealtypen
des amerikanischen Exzeptionalismus gebildet, die als ideationales Analyseraster
der amerikanischen Interventionspolitik dienen können. Ausgehend
von der Doppelfunktion des amerikanischen Exzeptionalismus
als Movens außenpolitischer Präferenzen und als strategische Legitimationsgrundlage
wird in einem historisch angeleiteten Vergleich gezeigt,
dass Elemente dieser vier Idealtypen die außenpolitischen Traditionen
der USA maßgeblich (mit)geprägt haben. Zur weiteren Einordnung des
amerikanischen Exzeptionalismus in den außenpolitischen Präferenzbildungsprozess
der USA wird in einem zweiten Schritt die ideationale Variante
der liberalen Außenpolitiktheorie nach Andrew Moravcsik um den
Faktor der politischen Kommunikation ergänzt. Der amerikanische
Exzeptionalismus dient dem Präsidenten dabei als narrativer Diskursrahmen
außenpolitischer Interpretations- und Deutungsangebote, mit denen
er die Öffentlichkeit zu mobilisieren und den Kongress von seinen
außenpolitischen Absichten zu überzeugen versucht. In diesem Zusammenhang
gilt: Je kongruenter die außenpolitischen Deutungsangebote
mit dem Narrativ des amerikanischen Exzeptionalismus, desto wirkmächtiger
ihre Bedeutung für den gesellschaftlichen Diskurs der USA
über Außenpolitik. Entgegen den Annahmen der liberalen Außenpolitiktheorie
zeigt sich, dass der Präsident als Strategic Narrator des amerikanischen
Exzeptionalismus die Öffentlichkeit nicht nur repräsentieren,
sondern auch zu seinen Gunsten mobilisieren kann.

For some optimization problems on a graph \(G=(V,E)\), one can give a general formulation: Let \(c\colon E \to \mathbb{R}_{\geq 0}\) be a cost function on the edges and \(X \subseteq 2^E\) be a set of (so-called feasible) subsets of \(E\), one aims to minimize \(\sum_{e\in S} c(e)\) among all feasible \(S\in X\). This formulation covers, for instance, the shortest path problem by choosing \(X\) as the set of all paths between two vertices, or the minimum spanning tree problem by choosing \(X\) to be the set of all spanning trees. This bachelor thesis deals with a parametric version of this formulation, where the edge costs \(c_\lambda\colon E \to \mathbb{R}_{\geq 0}\) depend on a parameter \(\lambda\in\mathbb{R}_{\geq 0}\) in a concave and piecewise linear manner. The goal is to investigate the worst case minimum size of a so-called representation system \(R\subseteq X\), which contains for each scenario \(\lambda\in\mathbb{R}_{\geq 0}\) an optimal solution \(S(\lambda)\in R\). It turns out that only a pseudo-polynomial size can be ensured in general, but smaller systems have to exist in special cases. Moreover, methods are presented to find such small systems algorithmically. Finally, the notion of a representation system is relaxed in order to get smaller (i.e. polynomial) systems ensuring a certain approximation ratio.

This thesis is concerned with a phase field model for martensitic transformations in metastable austenitic steels. Within the phase field approach an order parameter is introduced to indicate whether the present phase is austenite or martensite. The evolving microstructure is described by the evolution of the order parameter, which is assumed to follow the time-dependent Ginzburg-Landau equation. The elastic phase field model is enhanced in two different ways to take further phenomena into account. First, dislocation movement is considered by a crystal plasticity setting. Second, the elastic model for martensitic transformations is combined with a phase field model for fracture. Finite element simulations are used to study the single effects separately which contribute to the microstructure formation.

Buses not arriving on time and then arriving all at once - this phenomenon is known from
busy bus routes and is called bus bunching.
This thesis combines the well studied but so far separate areas of bus-bunching prediction
and dynamic holding strategies, which allow to modulate buses’ dwell times at stops to
eliminate bus bunching. We look at real data of the Dublin Bus route 46A and present
a headway-based predictive-control framework considering all components like data
acquisition, prediction and control strategies. We formulate time headways as time series
and compare several prediction methods for those. Furthermore we present an analytical
model of an artificial bus route and discuss stability properties and dynamic holding
strategies using both data available at the time and predicted headway data. In a numerical
simulation we illustrate the advantages of the presented predictive-control framework
compared to the classical approaches which only use directly available data.

This study presents an energy-efficient ultra-low voltage standard-cell based memory in 28nm FD-SOI. The storage element (standard-cell latch) is replaced with a full- custom designed latch with 50 % less area. Error-free operation is demonstrated down to 450mV @ 9MHz. By utilizing body bias (BB) @ VDD = 0.5 V performance spans from 20 MHz @ BB=0V to 110MHz @ BB=1V.

Advanced Nursing Practice
(2016)

Der demografische Wandel stellt insbesondere die Gesundheitsversorgung vor große Her-
ausforderungen. Immer mehr ältere, chronisch erkrankte und häufig multimorbide Menschen
stehen immer weniger jüngeren Menschen gegenüber, die sowohl als pflegende Angehörige
als auch als Pflegefachpersonen, Ärzt_innen oder Angehörige anderer Gesundheitsberufe
für die Sicherstellung der pflegerisch-medizinischen Versorgung zur Verfügung stehen. Das an der Hochschule Ludwigshafen am Rhein angesiedelte Teilprojekt „EB – Entwicklung
durch Bildung – Pflege und Gesundheit“ fokussiert sowohl auf die Entwicklung eines hoch-
schulischen Bildungsangebots für Pflegefachpersonen, als auch auf die Konzeption eines
Modells erweiterter gemeindenaher Pflegepraxis für die Region Westpfalz.

Stochastic Network Calculus (SNC) emerged from two branches in the late 90s:
the theory of effective bandwidths and its predecessor the Deterministic Network
Calculus (DNC). As such SNC’s goal is to analyze queueing networks and support
their design and control.
In contrast to queueing theory, which strives for similar goals, SNC uses in-
equalities to circumvent complex situations, such as stochastic dependencies or
non-Poisson arrivals. Leaving the objective to compute exact distributions behind,
SNC derives stochastic performance bounds. Such a bound would, for example,
guarantee a system’s maximal queue length that is violated by a known small prob-
ability only.
This work includes several contributions towards the theory of SNC. They are
sorted into four main contributions:
(1) The first chapters give a self-contained introduction to deterministic net-
work calculus and its two branches of stochastic extensions. The focus lies on the
notion of network operations. They allow to derive the performance bounds and
simplifying complex scenarios.
(2) The author created the first open-source tool to automate the steps of cal-
culating and optimizing MGF-based performance bounds. The tool automatically
calculates end-to-end performance bounds, via a symbolic approach. In a second
step, this solution is numerically optimized. A modular design allows the user to
implement their own functions, like traffic models or analysis methods.
(3) The problem of the initial modeling step is addressed with the development
of a statistical network calculus. In many applications the properties of included
elements are mostly unknown. To that end, assumptions about the underlying
processes are made and backed by measurement-based statistical methods. This
thesis presents a way to integrate possible modeling errors into the bounds of SNC.
As a byproduct a dynamic view on the system is obtained that allows SNC to adapt
to non-stationarities.
(4) Probabilistic bounds are fundamentally different from deterministic bounds:
While deterministic bounds hold for all times of the analyzed system, this is not
true for probabilistic bounds. Stochastic bounds, although still valid for every time
t, only hold for one time instance at once. Sample path bounds are only achieved by
using Boole’s inequality. This thesis presents an alternative method, by adapting
the theory of extreme values.
(5) A long standing problem of SNC is the construction of stochastic bounds
for a window flow controller. The corresponding problem for DNC had been solved
over a decade ago, but remained an open problem for SNC. This thesis presents
two methods for a successful application of SNC to the window flow controller.

The recently established technologies in the areas of distributed measurement and intelligent
information processing systems, e.g., Cyber Physical Systems (CPS), Ambient
Intelligence/Ambient Assisted Living systems (AmI/AAL), the Internet of Things
(IoT), and Industry 4.0 have increased the demand for the development of intelligent
integrated multi-sensory systems as to serve rapid growing markets [1, 2]. These increase
the significance of complex measurement systems, that incorporate numerous advanced
methodological implementations including electronics circuit, signal processing,
and multi-sensory information fusion. In particular, in multi-sensory cognition applications,
to design such systems, the skill-required tasks, e.g., method selection, parameterization,
model analysis, and processing chain construction are elaborated with immense
effort, which conventionally are done manually by the expert designer. Moreover, the
strong technological competition imposes even more complicated design problems with
multiple constraints, e.g., cost, speed, power consumption,
exibility, and reliability.
Thus, the conventional human expert based design approach may not be able to cope
with the increasing demand in numbers, complexity, and diversity. To alleviate the issue,
the design automation approach has been the topic for numerous research works [3-14]
and has been commercialized to several products [15-18]. Additionally, the dynamic
adaptation of intelligent multi-sensor systems is the potential solution for developing
dependable and robust systems. Intrinsic evolution approach and self-x properties [19],
which include self-monitoring, -calibrating/trimming, and -healing/repairing, are among
the best candidates for the issue. Motivated from the ongoing research trends and based
on the background of our research work [12, 13] among the pioneers in this topic, the
research work of the thesis contributes to the design automation of intelligent integrated
multi-sensor systems.
In this research work, the Design Automation for Intelligent COgnitive system with self-
X properties, the DAICOX, architecture is presented with the aim of tackling the design
effort and to providing high quality and robust solutions for multi-sensor intelligent
systems. Therefore, the DAICOX architecture is conceived with the defined goals as
listed below.
Perform front to back complete processing chain design with automated method
selection and parameterization,
Provide a rich choice of pattern recognition methods to the design method pool,
Associate design information via interactive user interface and visualization along
with intuitive visual programming,
Deliver high quality solutions outperforming conventional approaches by using
multi-objective optimization,
Gain the adaptability, reliability and robustness of designed solutions with self-x
properties,
Derived from the goals, several scientific methodological developments and implementations,
particularly in the areas of pattern recognition and computational intelligence,
will be pursued as part of the DAICOX architecture in the research work of this thesis.
The method pool is aimed to contain a rich choice of methods and algorithms covering
data acquisition and sensor configuration, signal processing and feature computation,
dimensionality reduction, and classification. These methods will be selected and parameterized
automatically by the DAICOX design optimization to construct a multi-sensory
cognition processing chain. A collection of non-parametric feature quality assessment
functions for the purpose of Dimensionality Reduction (DR) process will be presented.
In addition, to standard DR methods, the variations of feature selection method, in
particular, feature weighting will be proposed. Three different classification categories
shall be incorporated in the method pool. Hierarchical classification approach will be
proposed and developed to serve as a multi-sensor fusion architecture at the decision
level. Beside multi-class classification, one-class classification methods, e.g., One-Class
SVM and NOVCLASS will be presented to extend functionality of the solutions, in particular,
anomaly and novelty detection. DAICOX is conceived to effectively handle the
problem of method selection and parameter setting for a particular application yielding
high performance solutions. The processing chain construction tasks will be carried
out by meta-heuristic optimization methods, e.g., Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO), with multi-objective optimization approach and model
analysis for robust solutions. In addition, to the automated system design mechanisms,
DAICOX will facilitate the design tasks with intuitive visual programming and various
options of visualization. Design database concept of DAICOX is aimed to allow the
reusability and extensibility of the designed solutions gained from previous knowledge.
Thus, the cooperative design of machine and knowledge from the design expert can also
be utilized for obtaining fully enhanced solutions. In particular, the integration of self-x
properties as well as intrinsic optimization into the system is proposed to gain enduring
reliability and robustness. Hence, DAICOX will allow the inclusion of dynamically
reconfigurable hardware instances to the designed solutions in order to realize intrinsic
optimization and self-x properties.
As a result from the research work in this thesis, a comprehensive intelligent multisensor
system design architecture with automated method selection, parameterization,
and model analysis is developed with compliance to open-source multi-platform software.It is integrated with an intuitive design environment, which includes visual programming
concept and design information visualizations. Thus, the design effort is minimized as
investigated in three case studies of different application background, e.g., food analysis
(LoX), driving assistance (DeCaDrive), and magnetic localization. Moreover, DAICOX
achieved better quality of the solutions compared to the manual approach in all cases,
where the classification rate was increased by 5.4%, 0.06%, and 11.4% in the LoX,
DeCaDrive, and magnetic localization case, respectively. The design time was reduced
by 81.87% compared to the conventional approach by using DAICOX in the LoX case
study. At the current state of development, a number of novel contributions of the thesis
are outlined below.
Automated processing chain construction and parameterization for the design of
signal processing and feature computation.
Novel dimensionality reduction methods, e.g., GA and PSO based feature selection
and feature weighting with multi-objective feature quality assessment.
A modification of non-parametric compactness measure for feature space quality
assessment.
Decision level sensor fusion architecture based on proposed hierarchical classification
approach using, i.e., H-SVM.
A collection of one-class classification methods and a novel variation, i.e.,
NOVCLASS-R.
Automated design toolboxes supporting front to back design with automated
model selection and information visualization.
In this research work, due to the complexity of the task, neither all of the identified goals
have been comprehensively reached yet nor has the complete architecture definition been
fully implemented. Based on the currently implemented tools and frameworks, ongoing
development of DAICOX is pursuing towards the complete architecture. The potential
future improvements are the extension of method pool with a richer choice of methods
and algorithms, processing chain breeding via graph based evolution approach, incorporation
of intrinsic optimization, and the integration of self-x properties. According to
these features, DAICOX will improve its aptness in designing advanced systems to serve
the increasingly growing technologies of distributed intelligent measurement systems, in
particular, CPS and Industrie 4.0.

Advantage of Filtering for Portfolio Optimization in Financial Markets with Partial Information
(2016)

In a financial market we consider three types of investors trading with a finite
time horizon with access to a bank account as well as multliple stocks: the
fully informed investor, the partially informed investor whose only source of
information are the stock prices and an investor who does not use this infor-
mation. The drift is modeled either as following linear Gaussian dynamics
or as being a continuous time Markov chain with finite state space. The
optimization problem is to maximize expected utility of terminal wealth.
The case of partial information is based on the use of filtering techniques.
Conditions to ensure boundedness of the expected value of the filters are
developed, in the Markov case also for positivity. For the Markov modulated
drift, boundedness of the expected value of the filter relates strongly to port-
folio optimization: effects are studied and quantified. The derivation of an
equivalent, less dimensional market is presented next. It is a type of Mutual
Fund Theorem that is shown here.
Gains and losses eminating from the use of filtering are then discussed in
detail for different market parameters: For infrequent trading we find that
both filters need to comply with the boundedness conditions to be an advan-
tage for the investor. Losses are minimal in case the filters are advantageous.
At an increasing number of stocks, again boundedness conditions need to be
met. Losses in this case depend strongly on the added stocks. The relation
of boundedness and portfolio optimization in the Markov model leads here to
increasing losses for the investor if the boundedness condition is to hold for
all numbers of stocks. In the Markov case, the losses for different numbers
of states are negligible in case more states are assumed then were originally
present. Assuming less states leads to high losses. Again for the Markov
model, a simplification of the complex optimal trading strategy for power
utility in the partial information setting is shown to cause only minor losses.
If the market parameters are such that shortselling and borrowing constraints
are in effect, these constraints may lead to big losses depending on how much
effect the constraints have. They can though also be an advantage for the
investor in case the expected value of the filters does not meet the conditions
for boundedness.
All results are implemented and illustrated with the corresponding numerical
findings.

Software is becoming increasingly concurrent: parallelization, decentralization, and reactivity necessitate asynchronous programming in which processes communicate by posting messages/tasks to others’ message/task buffers. Asynchronous programming has been widely used to build fast servers and routers, embedded systems and sensor networks, and is the basis of Web programming using Javascript. Languages such as Erlang and Scala have adopted asynchronous programming as a fundamental concept with which highly scalable and highly reliable distributed systems are built.
Asynchronous programs are challenging to implement correctly: the loose coupling between asynchronously executed tasks makes the control and data dependencies difficult to follow. Even subtle design and programming mistakes on the programs have the capability to introduce erroneous or divergent behaviors. As asynchronous programs are typically written to provide a reliable, high-performance infrastructure, there is a critical need for analysis techniques to guarantee their correctness.
In this dissertation, I provide scalable verification and testing tools to make asyn- chronous programs more reliable. I show that the combination of counter abstraction and partial order reduction is an effective approach for the verification of asynchronous systems by presenting PROVKEEPER and KUAI, two scalable verifiers for two types of asynchronous systems. I also provide a theoretical result that proves a counter-abstraction based algorithm called expand-enlarge-check, is an asymptotically optimal algorithm for the coverability problem of branching vector addition systems as which many asynchronous programs can be modeled. In addition, I present BBS and LLSPLAT, two testing tools for asynchronous programs that efficiently uncover many subtle memory violation bugs.

Alkylcyclopentadienylchrom(II)-Verbindungen und Stickstoffkomplexe des Molybdäns und Wolframs
(2016)

Der Einsatz von Chrom(II)acetat als Ausgangsverbindung führte in einer Reaktion mit Na\( ^4 \)Cp zum dimeren, Acetato-verbrückten Tetraisopropylcyclopentadienylchrom(II)-Halbsandwich-komplex [\( ^4Cp \)Cr(OAc)]\( _2 \) 13.
Die sehr gut zugängliche Verbindung 13 wurde auf ihre Reaktivität untersucht und als Startmaterial für die Herstellung weiterer Chromverbindungen eingesetzt. Der Tetraisopropylcyclopentadienylchrom(II)-Halbsandwichkomplex 13 ergab bei der Reduktion mit Kalium in einer Stickstoffatmosphäre den zweikernigen Nitrido-Komplex [\( ^4Cp \)Cr(N)]\( _2 \) und bei der Substitution mit Cyanid das quadratische Tetramer [\( ^4Cp \)Cr(CN)]\( _4 \).
Mit anderen Reaktionspartnern wie z. B. den Pseudohalogeniden Azid und Cyanid wurden dagegen unvollständige Umsetzungen beobachtet, die den Wunsch nach einer besser geeigneten Ausgangsverbindung weckten. Dies gelang durch den Einsatz von Trimethylhalogensilanen, welche die Acetato-Liganden von 13 gegen Chlorid, Bromid, Iodid und im Falle des Trimethylsilylesters der Trifluormethansulfonsäure auch gegen Trifluormethansulfonat austauschen.
Die Reduktion der Halbsandwichkomplexe des Typs [\( ^RCp \)MoCl\( _4 \)] mit Kalium in Gegenwart ungesättigter Ringsysteme (Toluol, Cycloheptatrien oder Cyclooctatetraen) knüpfte an die noch unveröffentlichten Ergebnisse mit Cyclopentadienylnickel- und eisenverbindungen an und erbrachte folgendes Resultat: Während die Formeln der Reaktionsprodukte [\( ^RCp \)Mo\( _2 \)(Ring)] zur Interpretation als Tripeldecker-Sandwichkomplexe mit einem Ringsystem als Mitteldeck zwischen den beiden Metallatomen einluden, gaben die Massenspektren Hinweise auf eine Reaktivität, die dazu nicht passt.
Die unter Argon hergestellte Verbindung musste am Spektrometer aus messtechnischen Gründen unter Stickstoff gehandhabt werden und die Spektren gaben Hinweise auf den Einbau von Stickstoff.

An Adaptive and Dynamic Simulation Framework for Incremental, Collaborative Classifier Fusion
(2016)

Abstract. To investigate incremental collaborative classifier fusion techniques, we have developed a comprehensive simulation framework. It is highly flexible and customizable, and can be adapted to various settings and scenarios. The toolbox is realized as an extension to the NetLogo multi-agent based simulation environment using its comprehensive Java- API. The toolbox has been integrated in two di↵erent environments, one for demonstration purposes and another, modeled on persons using re- alistic motion data from Zurich, who are communicating in an ad hoc fashion using mobile devices.

The main theme of this thesis is the interplay between algebraic and tropical intersection
theory, especially in the context of enumerative geometry. We begin by exploiting
well-known results about tropicalizations of subvarieties of algebraic tori to give a
simple proof of Nishinou and Siebert’s correspondence theorem for rational curves
through given points in toric varieties. Afterwards, we extend this correspondence
by additionally allowing intersections with psi-classes. We do this by constructing
a tropicalization map for cycle classes on toroidal embeddings. It maps algebraic
cycle classes to elements of the Chow group of the cone complex of the toroidal
embedding, that is to weighted polyhedral complexes, which are balanced with respect
to an appropriate map to a vector space, modulo a naturally defined equivalence relation.
We then show that tropicalization respects basic intersection-theoretic operations like
intersections with boundary divisors and apply this to the appropriate moduli spaces
to obtain our correspondence theorem.
Trying to apply similar methods in higher genera inevitably confronts us with moduli
spaces which are not toroidal. This motivates the last part of this thesis, where we
construct tropicalizations of cycles on fine logarithmic schemes. The logarithmic point of
view also motivates our interpretation of tropical intersection theory as the dualization
of the intersection theory of Kato fans. This duality gives a new perspective on the
tropicalization map; namely, as the dualization of a pull-back via the characteristic
morphism of a logarithmic scheme.

Der vorliegende Arbeits- und Forschungsbericht bietet eine Handreichung für Studiengangsentwickler_innen, um sie bei der Erstellung von Kompetenzprofilen zu unterstützen. Zu diesem Zweck werden drei verschiedene Tools der Kompetenzprofilerstellung vorgestellt. Diese umfassen die Stellenanzeigenanalyse, den Curriculumabgleich und Lehrendeninterviews. Diese Tools haben sich als sehr nützlich für die Entwicklung von kompetenzorientierten Studiengängen erwiesen. Die drei Verfahren werden einander gegenübergestellt und Implikationen für die Praxis abgeleitet. Dieser Bericht soll dazu beitragen, bedarfsorientierte Weiterbildungsangebote für die Region zu gestalten.

Annual Report 2015
(2016)

Annual Report, Jahrbuch AG Magnetismus

The energy efficiency of today’s microcontrollers is supported by the extensive usage of low-power mechanisms. A full power-down requires in many cases a complex, and maybe error prone, administration scheme, because data from the volatile memory have to be stored in a flash based back- up memory. New types of non-volatile memory, e.g. in RRAM technology, are faster and consumes a fraction of the energy compared to flash technology. This paper evaluates power gating for WSN with RRAM as back-up memory.