### Refine

#### Year of publication

#### Document Type

- Report (475) (remove)

#### Keywords

- Mathematikunterricht (7)
- modelling (7)
- numerical upscaling (7)
- Modellierung (6)
- praxisorientiert (6)
- Ambient Intelligence (5)
- Regelung (5)
- hub location (5)
- Elastoplastizität (4)
- Integer programming (4)

#### Faculty / Organisational entity

In this paper a three dimensional stochastic model for the lay-down of fibers on a moving conveyor belt in the production process of nonwoven materials is derived. The model is based on stochastic diferential equations describing the resulting position of the fiber on the belt under the influence of turbulent air ows. The model presented here is an extension of an existing surrogate model, see [6, 3].

The World Wide Web is a medium through which a manufacturer may allow Internet visitors to customize or compose his products. Due to missing or rapidly changing standards these applications are often restricted to relatively simple CGI or JAVA based scripts. Usually, results like images or movies are stored in a database and are transferred on demand to the web-user. Viper (Visualisierung parametrisch editierbarer Raumkomponenten) is a Toolkit [VIP96] written in C++ and JAVA which provides 3D-modeling and visualization methodsfor developing complex web-based applications. The Toolkit has been designed to built a prototype, which can be used to construct and visualize prefabricated homes on the Internet. Alternative applications are outlined in this paper. Within Viper, all objects are stored in a scene graph (VSSG ), which is the basic data structure of the Toolkit. To show the concept and structure of the Toolkit, functionality, and implementation of the prototype are described.

In this work, we analyze two important and simple models of short rates, namely Vasicek and CIR models. The models are described and then the sensitivity of the models with respect to changes in the parameters are studied. Finally, we give the results for the estimation of the model parameters by using two different ways.

Let \(a_1,\dots,a_n\) be independent random points in \(\mathbb{R}^d\) spherically symmetrically but not necessarily identically distributed. Let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_n\) and for any \(k\)-dimensional subspace \(L\subseteq \mathbb{R}^d\) let \(Vol_L(X) :=\lambda_k(L\cap X)\) be the volume of \(X\cap L\) with respect to the \(k\)-dimensional Lebesgue measure \(\lambda_k, k=1,\dots,d\). Furthermore, let \(F^{(i)}\)(t):= \(\bf{Pr}\) \(\)(\(\Vert a_i \|_2\leq t\)),
\(t \in \mathbb{R}^+_0\) , be the radial distribution function of \(a_i\). We prove that the expectation
functional \(\Phi_L\)(\(F^{(1)}, F^{(2)},\dots, F^{(n)})\) := \(E(Vol_L(X)\)) is strictly decreasing in
each argument, i.e. if \(F^{(i)}(t) \le G^{(i)}(t)t\), \(t \in {R}^+_0\), but \(F^{(i)} \not\equiv G^{(i)}\), we show \(\Phi\) \((\dots, F^{(i)}, \dots\)) > \(\Phi(\dots,G^{(i)},\dots\)). The proof is clone in the more general framework
of continuous and \(f\)- additive polytope functionals.

In this article we give a sufficient condition that a simply connected flexible body does not penetrate itself, if it is subjected to a continuous deformation. It is shown that the deformation map is automatically injective, if it is just locally injective and injective on the boundary of the body. Thereby, it is very remarkable that no higher regularity assumption than continuity for the deformation map is required. The proof exclusively relies on homotopy methods and the Jordan-Brouwer separation theorem.

We propose a constraint-based approach for the two-dimensional rectangular packing problem with orthogonal orientations. This problem is to arrange a set of rectangles that can be rotated by 90 degrees into a rectangle of minimal size such that no two rectangles overlap. It arises in the placement of electronic devices during the layout of 2.5D System-in-Package integrated electronic systems. Moffitt et al. [8] solve the packing without orientations with a branch and bound approach and use constraint propagation. We generalize their propagation techniques to allow orientations. Our approach is compared to a mixed-integer program and we provide results that outperform it.

The notion of Q-Gorenstein smoothings has been introduced by Kollar. ([KoJ], 6.2.3). This notion is essential for formulating Kollar's conjectures on smoothing components for rational surface singularities. He conjectures, loosely speaking, that every smoothing of a rational surface singularity can be obtained by blowing down a deformation of a partial resolution, this partial resolution having the property (among others) that the singularities occuring on it all have qG-smoothings. (For more details and precise statements see [Ko], ch. 6.). It is therefore of interest to construct singularities having qG-smoothings.

The direction splitting approach proposed earlier in [6], aiming at the efficient solution of Navier-Stokes equations, is extended and adopted here to solve the Navier-Stokes-Brinkman equations describing incompressible flows in plain and in porous media. The resulting pressure equation is a perturbation of the
incompressibility constrained using a direction-wise factorized operator as proposed in [6]. We prove that this approach is unconditionally stable for the unsteady Navier-Stokes-Brinkman problem. We also provide numerical illustrations of the method's accuracy and efficiency.

A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics. By exploiting Kirchho's kinetic analogy, the potential energy density of a rod is a function on the tangent bundle of the conguration manifold and thus formally corresponds to the Lagrangian function of a dynamical system. The equilibrium equations are derived from a variational principle using a formulation that involves null{space matrices. In this formulation, no Lagrange multipliers are necessary to enforce orthonormality of the directors. Noether's theorem relates rst integrals of the equilibrium equations to Lie group actions on the conguration bundle, so{called symmetries. The symmetries relevant for rod mechanics are frame{indierence, isotropy and uniformity. We show that a completely analogous and self{contained theory of discrete rods can be formulated in which the arc{length is a discrete variable ab initio. In this formulation, the potential energy density is dened directly on pairs of points along the arc{length of the rod, in analogy to Veselov's discrete reformulation of Lagrangian mechanics. A discrete version of Noether's theorem then identies exact rst integrals of the discrete equilibrium equations. These exact conservation properties confer the discrete solutions accuracy and robustness, as demonstrated by selected examples of application. Copyright c 2010 John Wiley & Sons, Ltd.

For the last decade, optimization of beam orientations in intensitymodulated radiation therapy (IMRT) has been shown to be successful in improving the treatment plan. Unfortunately, the quality of a set of beam orientations depends heavily on its corresponding beam intensity proles. Usually, a stochastic selector is used for optimizing beam orientation, and then a single objective inverse treatment planning algorithm is used for the optimization of beam intensity proles. The overall time needed to solve the inverse planning for every random selection of beam orientations becomes excessive. Recently, considerable improvement has been made in optimizing beam intensity proles by using multiple objective inverse treatment planning. Such an approach results in a variety of beam intensity proles for every selection of beam orientations, making the dependence between beam orientations and its intensity proles less important. We take advantage of this property to present a dynamic algorithm for beam orientation in IMRT which is based on multicriteria inverse planning. The algorithm approximates beam intensity proles iteratively instead of doing it for every selection of beam orientation, saving a considerable amount of calculation time. Every iteration goes from an N-beam plan to a plan with N + 1 beams. Beam selection criteria are based on a score function that minimizes the deviation from the prescribed dose, in addition to a reject-accept criterion. To illustrate the eciency of the algorithm it has been applied to an articial example where optimality is trivial and to three real clinical cases: a prostate carcinoma, a tumor in the head and neck region and a paraspinal tumor. In comparison to the standard equally spaced beam plans, improvements are reported in all of the three clinical examples, even, in some cases with a fewer number of beams.

Estelle is an internationally standardized formal description technique (FDT) designed for the specification of distributed systems, in particular communication protocols. An Estelle specification describes a system of communicating components (module instances). The specified system is closed in a topological sense, i.e. it has no ability to interact with some environment. Because of this restriction, open systems can only be specified together with and incorporated with an environment. To overcome this restriction, we introduce a compatible extension of Estelle, called "Open Estelle". It allows the specification of (topologically) open systems, i.e. systems that have the ability to communicate with any environment through a well-defined external interface. We define aformal syntax and a formal semantics for Open Estelle, both based on and extending the syntax and semantics of Estelle. The extension is compatible syntactically and semantically, i.e. Estelle is a subset of Open Estelle. In particular, the formal semantics of Open Estelle reduces to the Estelle semantics in the special case of a closed system. Furthermore, we present a tool for the textual integration of open systems into environments specified in Open Estelle, and a compiler for the automatic generation of implementations directly from Open Estelle specifications.

We present a generalization of Proth's theorem for testing certain large integers for primality. The use of Gauß sums leads to a much simpler approach to these primality criteria as compared to the earlier tests. The running time of the algorithms is bounded by a polynomial in the length of the input string. The applicability of our algorithms is linked to certain diophantine approximations of \(l\)-adic roots of unity.

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

Abstract. An efficient approach to the numerical upscaling of thermal conductivities of fibrous media, e.g. insulation materials, is considered. First, standard cell problems for a second order elliptic equation are formulated for a proper piece of random fibrous structure, following homogenization theory. Next, a graph formed by the fibers is considered, and a second order elliptic equation with suitable boundary conditions is solved on this graph only. Replacing the boundary value problem for the full cell with an auxiliary problem with special boundary conditions on a connected subdomain of highly conductive material is justified in a previous work of the authors. A discretization on the graph is presented here, and error estimates are provided. The efficient implementation of the algorithm is discussed. A number of numerical experiments is presented in order to illustrate the performance of the proposed method.

Experience gathered from applying the software process modeling language MVP-L in software development organizations has shown the need for graphical representations of process models. Project members (i.e„ non MVP-L specialists) review models much more easily by using graphical representations. Although several various graphical notations were developed for individual projects in which MVP-L was applied, there was previously no consistent definition of a mapping between textual MVP-L models and graphical representations. This report defines a graphical representation schema for MVP-L
descriptions and combines previous results in a unified form. A basic set of building blocks (i.e., graphical symbols and text fragments) is defined, but because we must first gain experience with the new symbols, only rudimentary guidelines are given for composing basic
symbols into a graphical representation of a model.

In the literature, there are at least two equivalent two-factor Gaussian models for the instantaneous short rate. These are the original two-factor Hull White model (see [3]) and the G2++ one by Brigo and Mercurio (see [1]). Both these models first specify a time homogeneous two-factor short rate dynamics and then by adding a deterministic shift function '(·) fit exactly the initial term structure of interest rates. However, the obtained results are rather clumsy and not intuitive which means that a special care has to be taken for their correct numerical implementation.

In this article, we give an explicit homotopy between the solutions (i.e. stress, strain, displacement) of the quasistatic linear elastic and nonlinear elastoplastic boundary value problem, where we assume a linear kinematic hardening material law. We give error estimates with respect to the homotopy parameter.

A Lattice Boltzmann Method for immiscible multiphase flow simulations using the Level Set Method
(2008)

We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young-Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.

We present the application of a meshfree method for simulations of interaction between fluids and flexible structures. As a flexible structure we consider a sheet of paper. In a two-dimensional framework this sheet can be modeled as curve by the dynamical Kirchhoff-Love theory. The external forces taken into account are gravitation and the pressure difference between upper and lower surface of the sheet. This pressure difference is computed using the Finite Pointset Method (FPM) for the incompressible Navier-Stokes equations. FPM is a meshfree, Lagrangian particle method. The dynamics of the sheet are computed by a finite difference method. We show the suitability of the meshfree method for simulations of fluid-structure interaction in several applications.