### Refine

#### Year of publication

- 1998 (147) (remove)

#### Document Type

- Preprint (109)
- Article (21)
- Doctoral Thesis (7)
- Lecture (3)
- Report (3)
- Diploma Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)
- Working Paper (1)

#### Keywords

- AG-RESY (13)
- PARO (12)
- SKALP (9)
- Case Based Reasoning (4)
- industrial robots (4)
- motion planning (3)
- parallel processing (3)
- CIM-OSA (2)
- HANDFLEX (2)
- Kalman filtering (2)

#### Faculty / Organisational entity

- Fachbereich Informatik (38)
- Fachbereich Mathematik (35)
- Fachbereich Physik (35)
- Fraunhofer (ITWM) (12)
- Fachbereich Wirtschaftswissenschaften (9)
- Fachbereich Elektrotechnik und Informationstechnik (6)
- Fachbereich Maschinenbau und Verfahrenstechnik (6)
- Fachbereich Biologie (3)
- Fachbereich Chemie (2)
- Universitätsbibliothek (1)

In this paper we study the space-time asymptotic behavior of the solutions and derivatives to th incompressible Navier-Stokes equations. Using moment estimates we obtain that strong solutions to the Navier-Stokes equations which decay in \(L^2\) at the rate of \(||u(t)||_2 \leq C(t+1)^{-\mu}\) will have the following pointwise space-time decay \[|D^{\alpha}u(x,t)| \leq C_{k,m} \frac{1}{(t+1)^{ \rho_o}(1+|x|^2)^{k/2}} \]
where \( \rho_o = (1-2k/n)( m/2 + \mu) + 3/4(1-2k/n)\), and \(|a |= m\). The dimension n is \(2 \leq n \leq 5\) and \(0\leq k\leq n\) and \(\mu \geq n/4\)

Das Problem der Integration heterogener Softwaresysteme stellt sich auch auf dem Gebiet der CAx-Systeme, wie sie in vielfältigen Ausprägungen etwa in der Automobilbranche für die Fahrzeugentwicklung eingesetzt werden. Zunächst werden die heute in diesem Bereich
praktizierten Lösungen und die dabei auftretenden Probleme kurz dargestellt. Danach werden der neue Standard für Produktdaten, STEP, und der Standard für die Interoperabilität heterogener Softwaresysteme, CORBA, sowie einige CORBA-Entwurfsmuster erläutert. Als nächstes wird eine auf diesen beiden Standards basierende CAx-Integrationsarchitektur, die im Projekt ANICA entwickelt wurde, vorgestellt und die prinzipielle Vorgehensweise bei
ihrer Realisierung beschrieben. Daran anschließend wird über eine erste Umsetzung dieser Architektur in die Praxis berichtet. Zum Abschluß wird kurz auf die gewonnenen Erfahrungen eingegangen und ein Ausblick auf zukünftige Entwicklungen gegeben.

Die virtuelle Produktentwicklung in verteilter Umgebung erfordert eine intensive Kommunika-tion zwischen den beteiligten CAx-Systemen. Diese findet bisher in Form des dateibasierten Datenaustausches mit Hilfe von Direktkonvertern oder neutralen Schnittstellen statt. Der Datenaustausch wird hierbei meist in mehreren Iterationsschleifen durchgeführt und ist oft mit Datenverlusten sowie Unterbrechungen der Entwicklungsaktivitäten verbunden. Demgegenüber steht als neuer Ansatz für die Interoperabilität zwischen CAx-Systemen das Konzept eines CAx-Objektbusses auf Basis von CORBA und STEP. Dieser Ansatz ermög-licht eine plattformübergreifende Online-Kopplung heterogener CAx-Systeme. Im Gegensatz zum dateibasierten Datenaustausch ist hierbei ein transparenter Zugriff sowohl auf Daten als auch auf Funktionen der angebundenen Systeme möglich. Dadurch kann die Durchgängigkeit der Produktdaten in der Prozeßkette deutlich erhöht werden. Zur Beurteilung der Praxistauglichkeit wird dieser neue Ansatz dem dateibasierten Daten-austausch am Beispiel virtueller Einbauuntersuchungen gegenübergestellt. Dabei werden für unterschiedliche praxisrelevante Modellgrößen die für die Übertragung von Geometrie und Topologie erforderlichen Zeiten analysiert und verglichen. Weiterhin werden die generellen Vor- und Nachteile der beiden Lösungen dargestellt. Abschließend wird auf die Potentiale des neuen Ansatzes für den Einsatz in anderen Bereichen eingegangen.

Interoperability between different CAx systems involved in the development process of cars is presently one of the most critical issues in the automotive industry. None of the existing CAx systems meets all requirements of the very complex process network of the lifecycle of a car. With this background, industrial engineers have to use various CAx systems to get an optimal support for their daily work. Today, the communication between different CAx systems is done via data files using special direct converters or neutral system independent standards like IGES, VDAFS, and recently STEP, the international standard for product data description. To reduce the dependency on individual CAx s ystem vendors, the German automotive industry developed an open CAx system architecture based on STEP as guiding principle for CAx system development. The central component of this architecture is a common, system-independent access interface to CAx functions and data of all involved CAx systems, which is under development in the project ANICA. Within this project, a CAx object bus has been developed based on a STEP data description using CORBA as an integration platform. This new approach allows a transparent access to data and functions of the integrated CAx systems without file-based data exchange. The product development process with various CAx systems concerns objects from different CAx systems. Thus, mechanisms are needed to handle the persistent storage of the CAx objects distributed over the CAx object bus to give the developing engineers a consistent view of the data model of their product. The following paper discusses several possibilities to guarantee consistent data management and storage of distributed CAx models. One of the most promising approaches is the enhancement of the CAx object bus by a STEP-based object-oriented data server to realise a central data management.

Simultaneous quantifier elimination in sequent calculus is an improvement over the well-known skolemization. It allows a lazy handling of instantiations as well as of the order of certain reductions. We prove the soundness of a sequent calculus which incorporates a rule for simultaneous quantifier elimination. The proof is performed by semantical arguments and provides some insights into the dependencies between various formulas in a sequent.

Monomial representations and operations for Gröbner bases computations are investigated from an implementation point of view. The technique ofvectorized monomial operations is introduced and it is shown how it expedites computations of Gröbner bases. Furthermore, a rank-based monomialrepresentation and comparison technique is examined and it is concluded that this technique does not yield an additional speedup over vectorizedcomparisons. Extensive benchmark tests with the Computer Algebra System SINGULAR are used to evaluate these concepts.

The critical points of the continuous series are characterized by two complex numbers l_1,l_2 (Re(l_1,l_2)< 0), and a natural number n (n>=3) which enters the string susceptibility constant through gamma = -2/(n-1). The critical potentials are analytic functions with a convergence radius depending on l_1 or l_2. We use the orthogonal polynomial method and solve the Schwinger-Dyson equations with a technique borrowed from conformal field theory.

The first observation of spatiotemporal self-focusing of spin waves is reported. The experimental results are obtained for dipolar spin waves in yttrium-iron-garnet films by means of a newly developed space- and time-resolved Brillouin light scattering technique. They demonstrate self-focusing of a moving wave pulse in two spatial dimensions, and formation of localized two-dimensional wave packets, the collapse of which is stopped by dissipation. The experimental results are in good qualitative agreement with numerical simulations.

Wavelet transform originated in 1980's for the analysis of seismic signals has seen an explosion of applications in geophysics. However, almost all of the material is based on wavelets over Euclidean spaces. This paper deals with the generalization of the theory and algorithmic aspects of wavelets to a spherical earth's model and geophysically relevant vector fields such as the gravitational, magnetic, elastic field of the earth.A scale discrete wavelet approach is considered on the sphere thereby avoiding any type of tensor-valued 'basis (kernel) function'. The generators of the vector wavelets used for the fast evaluation are assumed to have compact supports. Thus the scale and detail spaces are finite-dimensional. As an important consequence, detail information of the vector field under consideration can be obtained only by a finite number of wavelet coefficients for each scale. Using integration formulas that are exact up to a prescribed polynomial degree, wavelet decomposition and reconstruction are investigated for bandlimited vector fields. A pyramid scheme for the recursive computation of the wavelet coefficients from level to level is described in detail. Finally, data compression is discussed for the EGM96 model of the earth's gravitational field.

Robust Reliability of Diagnostic Multi-Hypothesis Algorithms: Application to Rotating Machinery
(1998)

Damage diagnosis based on a bank of Kalman filters, each one conditioned on a specific hypothesized system condition, is a well recognized and powerful diagnostic tool. This multi-hypothesis approach can be applied to a wide range of damage conditions. In this paper, we will focus on the diagnosis of cracks in rotating machinery. The question we address is: how to optimize the multi-hypothesis algorithm with respect to the uncertainty of the spatial form and location of cracks and their resulting dynamic effects. First, we formulate a measure of the reliability of the diagnostic algorithm, and then we discuss modifications of the diagnostic algorithm for the maximization of the reliability. The reliability of a diagnostic algorithm is measured by the amount of uncertainty consistent with no-failure of the diagnosis. Uncertainty is quantitatively represented with convex models.

We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.

This paper presents a brief overview of the INRECA-II methodology for building and maintaining CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development and maintenance experience is documented using software process models and stored in a three-layered experience packet.

For defining attribute types to be used in the case representation, taxonomies occur quite often. The symbolic values at any node of the taxonomy tree are used as attribute values in a case or a query. A taxonomy type represents a relationship between the symbols through their position within the taxonomy-tree which expresses knowledge about the similarity between the symbols. This paper analyzes several situations in which taxonomies are used in different ways and proposes a systematic way of specifying local similarity measures for taxonomy types. The proposed similarity measures have a clear semantics and are easy to compute at runtime.

As the previous chapters of this book have shown, case-based reasoning is a technology that has been successfully applied to a large range of different tasks. Through all the different CBR projects, both basic research projects as well as industrial development projects, lots of knowledge and experience about how to build a CBR application has been collected. Today, there is already an increasing number of successful companies developing industrial CBR applications. In former days, these companies could develop their early pioneering CBR applications in an ad-hoc manner. The highly-skilled CBR expert of the company was able to manage these projects and to provide the developers with the required expertise.

Object-oriented case representations require approaches for similarity assessment that allow to compare two differently structured objects, in particular, objects belonging to different object classes. Currently, such similarity measures are developed more or less in an ad-hoc fashion. It is mostly unclear, how the structure of an object-oriented case model, e.g., the class hierarchy, influences similarity assessment. Intuitively, it is obvious that the class hierarchy contains knowledge about the similarity of the objects. However, how this knowledge relates to the knowledge that could be represented in similarity measures is not obvious at all. This paper analyzes several situations in which class hierarchies are used in different ways for case modeling and proposes a systematic way of specifying similarity measures for comparing arbitrary objects from the hierarchy. The proposed similarity measures have a clear semantics and are computationally inexpensive to compute at run-time.

Although several systematic analyses of existing approaches to adaptation have been published recently, a general formal adaptation framework is still missing. This paper presents a step into the direction of developing such a formal model of transformational adaptation. The model is based on the notion of the quality of a solution to a problem, while quality is meant in a more general sense and can also denote some kind of appropriateness, utility, or degree of correctness. Adaptation knowledge is then defined in terms of functions transforming one case into a successor case. The notion of quality provides us with a semantics for adaptation knowledge and allows us to define terms like soundness, correctness and completeness. In this view, adaptation (and even the whole CBR process) appears to be a special instance of an optimization problem.

This paper motivates the necessity for support for negotiation during Sales Support on the Internet within Case-Based Reasoning solutions. Different negotiation approaches are discussed and a general model of the sales process is presented. Further, the tradition al CBR-cycle is modified in such a way that iterative retrieval during a CBR consulting session is covered by the new model. Several gen eral characteristics of negotiation are described and a case study is shown where preliminary approaches are used to negotiate with a cu stomer about his demands and available products in a 'CBR-based' Electronic Commerce solution.

Stand des strategischen Controlling-Berichtwesens und Übertragungsmöglichkeiten auf die Universität
(1998)

Enhancing the quality of surgical interventions is one of the main goals of surgical robotics. Thus we have devised a surgical robotic system for maxillofacial surgery which can be used as an intelligent intraoperative surgical tool. Up to now a surgeon preoperatively plans an intervention by studying twodimensional X-rays, thus neglecting the third dimension. In course of the special research programme "Computer and Sensor Aided Surgery" a planning system has been developed at our institute, which allows the surgeon to plan an operation on a threedimensional computer model of the patient . Transposing the preoperatively planned bone cuts, bore holes, cavities, and milled surfaces during surgery still proves to be a problem, as no adequate means are at hand: the actual performance of the surgical intervention and the surgical outcome solely depend on the experience and the skill of the operating surgeon. In this paper we present our approach of a surgical robotic system to be used in maxillofacial surgery. Special stress is being laid upon the modelling of the environment in the operating theatre and the motion planning of our surgical robot .