Refine
Document Type
- Article (10)
- Conference Proceeding (1)
Keywords
- adolescents (1)
- posture (1)
- training (1)
Faculty / Organisational entity
- Fachbereich Sozialwissenschaften (11) (remove)
The importance of well trained and stable neck flexors and extensors as well as trunk muscles for intentional headers in soccer is increasingly discussed. The neck flexors and extensors should ensure a coupling of trunk and head at the time of ball contact to increase the physical mass hitting the ball and reduce head acceleration. The aim of the study was to analyze the influence of a 6-week strength training program (neck flexors, neck extensors) on the acceleration of the head during standing, jumping and running headers as well as after fatigue of the trunk muscles on a pendulum header. A total of 33 active male soccer players (20.3 ± 3.6 years, 1.81 ± 0.07 m, 75.5 ± 8.3 kg) participated and formed two training intervention groups (IG1: independent adult team, IG2: independent youth team) and one control group (CG: players from different teams). The training intervention consisted of three exercises for the neck flexors and extensors. The training effects were verified by means of the isometric maximum voluntary contraction (IMVC) measured by a telemetric Noraxon DTS force sensor. The head acceleration during ball contact was determined using a telemetric Noraxon DTS 3D accelerometer. There was no significant change of the IMVC over time between the groups (F=2.265, p=.121). Head acceleration was not reduced significantly for standing (IG1 0.4 ± 2.0, IG2 0.1 ± 1.4, CG -0.4 ± 1.2; F = 0.796, p = 0.460), jumping (IG1-0.7 ± 1.4, IG2-0.2 ± 0.9, CG 0.1 ± 1.2; F = 1.272, p = 0.295) and running (IG1-1.0 ± 1.9, IG2-0.2 ± 1.4, CG -0.1 ± 1.6; F = 1.050, p = 0.362) headers as well as after fatigue of the trunk musculature for post-jumping (IG1-0.2 ± 2.1, IG2-0.6 ± 1.4; CG -0.6 ± 1.3; F = 0.184, p = 0.833) and post-running (IG1-0.3 ± 1.6, IG2-0.7 ± 1.2, CG 0.0 ± 1.4; F = 0.695, p = 0.507) headers over time between IG1, IG2 and CG. A 6-week strength training of the neck flexors and neck extensors could not show the presumed preventive benefit. Both the effects of a training intervention and the consequences of an effective intervention for the acceleration of the head while heading seem to be more complex than previously assumed and presumably only come into effect in case of strong impacts.
Key words: Heading, kinetics, head-neck-torso-alignment, neck musculature, repetitive head impacts, concussion
Heading in Soccer: Does Kinematics of the Head‐Neck‐Torso Alignment Influence Head Acceleration?
(2021)
There is little scientific evidence regarding the cumulative effect of purposeful heading. The head-neck-torso alignment is considered to be of great importance when it comes to minimizing potential risks when heading. Therefore, this study determined the relationship between head-neck-torso alignment (cervical spine, head, thoracic spine) and the acceleration of the head, the relationship between head acceleration and maximum ball speed after head impact and differences between head accelerations throughout different heading approaches (standing, jumping, running). A total of 60 male soccer players (18.9 ± 4.0 years, 177.6 ± 14.9 cm, 73.1 ± 8.6 kg) participated in the study. Head accelerations were measured by a telemetric Noraxon DTS 3D Sensor, whereas angles for the head-neck-torso alignment and ball speed were analyzed with a Qualisys Track Manager program. No relationship at all was found for the standing, jumping and running approaches. Concerning the relationship between head acceleration and maximum ball speed after head impact only for the standing header a significant result was calculated (p = 0.024, R2 = .085). A significant difference in head acceleration (p < .001) was identified between standing, jumping and running headers. To sum up, the relationship between head acceleration and head-neck-torso alignment is more complex than initially assumed and could not be proven in this study. Furthermore first data were generated to check whether the acceleration of the head is a predictor for the resulting maximum ball speed after head impact, but further investigations have to follow. Lastly, we confirmed the results that the head acceleration differs with the approach.
The core muscles play a central role in stabilizing the head during headers in soccer. The objective of this study was to examine the influence of a fatigued core musculature on the acceleration of the head during jump headers and run headers. Acceleration of the head was measured in a pre-post-design in 68 soccer players (age: 21.5 ± 3.8 years, height: 180.0 ± 13.9 cm, weight: 76.9 ± 8.1 kg). Data were recorded by means of a telemetric 3D acceleration sensor and with a pendulum header. The treatment encompassed two exercises each for the ventral, lateral, and dorsal muscle chains. The acceleration of the head between pre- and post-test was reduced by 0.3 G (p = 0.011) in jump headers and by 0.2 G (p = 0.067) in run headers. An additional analysis of all pretests showed an increased acceleration in run headers when compared to stand headers (p < 0.001) and jump headers (p < 0.001). No differences were found in the sub-group comparisons: semi-professional vs. recreational players, offensive vs. defensive players. Based on the results, we conclude that the acceleration of the head after fatiguing the core muscles does not increase, which stands in contrast to postulated expectations. More tests with accelerated soccer balls are required for a conclusive statement.
Adjustment Effects of Maximum Intensity Tolerance During Whole-Body Electromyostimulation Training
(2019)
Intensity regulation during whole-body electromyostimulation (WB-EMS) training is mostly controlled by subjective scales such as CR-10 Borg scale. To determine objective training intensities derived from a maximum as it is used in conventional strength training using the one-repetition-maximum (1-RM), a comparable maximum in WB-EMS is necessary. Therefore, the aim of this study was to examine, if there is an individual maximum intensity tolerance plateau after multiple consecutive EMS application sessions. A total of 52 subjects (24.1 ± 3.2 years; 76.8 ± 11.1 kg; 1.77 ± 0.09 m) participated in the longitudinal, observational study (38 males, 14 females). Each participant carried out four consecutive maximal EMS applications (T1–T4) separated by 1 week. All muscle groups were stimulated successively until their individual maximum and combined to a whole-body stimulation index to carry out a possible statement for the development of the maximum intensity tolerance of the whole body. There was a significant main effect between the measurement times for all participants (p < 0.001; ????2 = 0.39) as well as gender specific for males (p = 0.001; ????2 = 0.18) and females (p < 0.001; ????2 = 0.57). There were no interaction effects of gender × measurement time (p = 0.394). The maximum intensity tolerance increased significantly from T1 to T2 (p = 0.001) and T2 to T3 (p < 0.001). There was no significant difference between T3 and T4 (p = 1.0). These results indicate that there is an adjustment of the individual maximum intensity tolerance to a WB-EMS training after three consecutive tests. Therefore, there is a need of several habituation units comparable to the identification of the individual 1-RM in conventional strength training. Further research should focus on an objective intensity-specific regulation of the WB-EMS based on the individual maximum intensity tolerance to characterize different training areas and therefore generate specific adaptations to a WB-EMS training compared to conventional strength training methods.
Whole-body electromyostimulation (WB-EMS) is an extension of the EMS application known in physical therapy. In WB-EMS, body composition and skinfold thickness seem to play a decisive role in influencing the Ohmic resistance and therefore the maximum intensity tolerance. That is why the therapeutic success of (WB-)EMS may depend on individual anatomical parameters. The aim of the study was to find out whether gender, skinfold thickness and parameters of body composition have an influence on the maximum intensity tolerance in WB-EMS. [Participants and Methods] Fifty-two participants were included in the study. Body composition (body impedance, body fat, fat mass, fat-free mass) and skinfold thicknesses were measured and set into relation to the maximum intensity tolerance. [Results] No relationship between the different anthropometric parameters and the maximum intensity tolerance was detected for both genders. Considering the individual muscle groups, no similarities were found in the results. [Conclusion] Body composition or skinfold thickness do not seem to have any influence on the maximum intensity tolerance in WB-EMS training. For the application in physiotherapy this means that a dosage of the electrical voltage within the scope of a (WB-) EMS application is only possible via the subjective feedback (BORG Scale).
The difference in the efficacy of altered stimulation parameters in whole-body-electromyostimulation (WB-EMS) training remains largely unexplored. However, higher impulse frequencies (>50 Hz) might be most adequate for strength gain. The aim of this study was to analyze potential differences in sports-related performance parameters after a 10-week WB-EMS training with different frequencies. A total of 51 untrained participants (24.9 ± 3.9 years, 174 ± 9 cm, 72.4 ± 16.4 kg, BMI 23.8 ± 4.1, body fat 24.7 ± 8.1 %) was randomly divided into three groups: one inactive control group (CON) and two training groups. They completed a 10-week WB-EMS program of 1.5 sessions/week, equal content but different stimulation frequencies (training with 20 Hz (T20) vs. training with 85 Hz (T85)). Before and after intervention, all participants completed jumping (Counter Movement Jump (CMJ), Squat Jump (SJ), Drop Jump (DJ)), sprinting (5m, 10m, 30m), and strength tests (isometric trunk flexion/extension). One-way ANOVA was applied to calculate parameter changes. Post-hoc least significant difference tests were performed to identify group differences. Significant differences were identified for CMJ (p = 0.007), SJ (p = 0.022), trunk flexion (p = 0.020) and extension (p=.013) with significant group differences between both training groups and CON (not between the two training groups T20 and T85). A 10-week WB-EMS training leads to significant improvements of jump and strength parameters in untrained participants. No differences could be detected between the frequencies. Therefore, both stimulation frequencies can be regarded as adequate for increasing specific sport performance parameters. Further aspects as regeneration or long term effects by the use of different frequencies still need to be clarified.
Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model’s accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait patterns
Muscular imbalances of the trunk muscles are held responsible for changes in body posture. At the same time, whole-body electromyostimulation (WB-EMS) has been established as a new training method that enables simultaneous stimulation of many muscle groups. This study was aiming to analyze if a 10 weeks WB-EMS training changes posture-relevant parameters and/or improves isometric strength of the trunk extensors and flexors, and if there are differences based on stimulation at 20 Hz and 85 Hz. Fifty eight untrained adult test persons were divided into three groups (control, CON; training with 20 Hz stimulation, TR20; training with 85 Hz, TR85). Anthropometric parameters, trunk extension and flexion forces and torques, and posture parameters were determined before (n = 58) and after (n = 53: CON: n = 15, TR20: n = 19, TR85: n = 19) a 10 weeks WB-EMS training program (15 applications, 9 exercises). Differences between the groups were calculated for pre- and post-tests using univariate ANOVA and between the test times using repeated (2 × 3) ANOVA. Comparisons of pairs were calculated post hoc based on Fisher (LSD). No differences between the groups were found for the posture parameters. The post hoc analysis of both trunk flexion and trunk extension forces and torques showed a significant difference between the groups TR85 and CON but no difference between the other group pairs. A 10 weeks whole-body electrostimulation training with a stimulation frequency of 85 Hz in contrast to training with a stimulation frequency of 20 Hz improves the trunk muscle strength of an untrained group but does not significantly change posture parameters.
Strength training in youth soccer has both a preventive and a
sports-specific component. Whole-body electromyostimulation
(WB-EMS) could represent an interesting time-saving add-on to
classical strength exercises in performance-oriented soccer. The
objective of this study was to find out whether a 10-week superimposed
WB-EMS training might have a more positive impact on
strength parameters in male youth elite soccer players than regular
athletic strength exercises alone. A total of 30 male youth soccer
players from a youth academy aged 15 to 17 years participated
in the study. Before and after the intervention, the isometric extension
and flexion forces of trunk and knee, and the hip abduction
and adduction forces were tested. Twelve players (control
group) absolved a conventional 20-minute strength training once
a week for a period of ten weeks. Eighteen players absolved the
same exercises but with superimposed WB-EMS. Blood creatine
kinase concentration was measured for training control. ANOVAs,
Friedman tests and post hoc t-tests were calculated (p =
0.05) to examine the strength development during the training period
between the groups. While we could not find significant
strength increases in the leg, hip and trunk muscles in the control
group (<4%), the strength of the WB-EMS group improved significantly
in 4 of the 6 muscle groups tested. In this group, the
strength of knee flexors increased significantly by 20.68 ±
21.55%, knee extensors by 31.43 ± 37.02%, hip adductors by
21.70 ± 12.86% and trunk flexors by 33.72 ± 27.43%. The rates
of strength increase are partly in line with other studies, partly
clearly higher, which might be explained by the athletically active
target group. A 10-week superimposed WB-EMS training improves
the strength of certain leg, hip and trunk muscles in male
adolescent elite soccer players to a greater extent than a pure athletic
strength training of the same duration.
Poor posture in childhood and adolescence is held responsible for the occurrence
of associated disorders in adult age. This study aimed to verify whether body
posture in adolescence can be enhanced through the improvement of neuromuscular
performance, attained by means of targeted strength, stretch, and body perception
training, and whether any such improvement might also transition into adulthood. From
a total of 84 volunteers, the posture development of 67 adolescents was checked
annually between the age of 14 and 20 based on index values in three posture
situations. 28 adolescents exercised twice a week for about 2 h up to the age of 18, 24
adolescents exercised continually up to the age of 20. Both groups practiced other
additional sports for about 1.8 h/week. Fifteen persons served as a non-exercising
control group, practicing optional sports of about 1.8 h/week until the age of 18,
after that for 0.9 h/week. Group allocation was not random, but depended on the
participants’ choice. A linear mixed model was used to analyze the development
of posture indexes among the groups and over time and the possible influence of
anthropometric parameters (weight, size), of optional athletic activity and of sedentary
behavior. The post hoc pairwise comparison was performed applying the Scheffé test.
The significance level was set at 0.05. The group that exercised continually (TR20)
exhibited a significant posture parameter improvement in all posture situations from
the 2nd year of exercising on. The group that terminated their training when reaching
adulthood (TR18) retained some improvements, such as conscious straightening of the
body posture. In other posture situations (habitual, closed eyes), their posture results
declined again from age 18. The effect sizes determined were between Eta² = 0.12 and
Eta² = 0.19 and represent moderate to strong effects. The control group did not exhibit
any differences. Anthropometric parameters, additional athletic activities and sedentary
behavior did not influence the posture parameters significantly. An additional athletic
training of 2 h per week including elements for improved body perception seems to
have the potential to improve body posture in symptom free male adolescents and
young adults.
#Sport #Gesundheit #Digital
(2021)
In ihrem 50. Jubiläumsjahr lud die Technische Universität Kaiserslautern am 26. und 27. November 2020 zu einem Höhepunkt ein: dem Kongress #Sport #Gesundheit #Digital. Für zwei Tage wurden im Rahmen eines Online-Forums gemeinsam die Themenfelder Sport, Gesundheit und Digitalisierung diskutiert. Wir freuen uns sehr, dass die Techniker Krankenkasse die TUK als Ausrichter der Veranstaltung besonders unterstützt hat. #SGD – Der Kongress setzte an der Schnittstelle von Sport, Gesundheit und Digitalisierung an und beleuchtete Chancen und Möglichkeiten, die durch das Zusammenspiel dieser Disziplinen entstehen können. Gleichzeitig wurden Risiken und Herausforderungen der digitalen Entwicklungen in Sport und Gesundheit betrachtet und perspektivisch mit Blick in die Zukunft analysiert. Hochkarätige Beiträge aus Wissenschaft und Praxis aus allen für das Themenspektrum relevanten Fachrichtungen sorgten für ein hohes Maß an Abwechslung und Transfer. Der Kongress richtete sich dabei nicht nur an Personen aus Wissenschaft und Praxis der Bereiche Gesundheitswesen und -management, Medizin und Psychologie. Ebenso angesprochen wurden Übungsleitende und Angehörige aus Hochschulsport und Sportwissenschaft, Studierende und Mitarbeitende aller bezogenen Fachrichtungen sowie alle allgemein interessierten Personen. Der vorliegende Kongressband stellt die Sammlung der Kongressinhalte dar. Neben den schriftlichen Beiträgen lassen sich hier auch Impressionen der Kongresstage und die Vorträge als interaktiv eingebundene Videos finden.