### Refine

#### Year of publication

- 1994 (33) (remove)

#### Document Type

- Report (17)
- Preprint (10)
- Article (5)
- Doctoral Thesis (1)

#### Language

- English (33) (remove)

#### Has Fulltext

- yes (33)

#### Is part of the Bibliography

- no (33)

#### Keywords

- AG-RESY (2)
- PARO (2)
- Case-Based Classification Algorithms (1)
- Case-Based Representability (1)
- CoMo-Kit (1)
- GRAPHICS (1)
- LOADBAL (1)
- SIMD architectures (1)
- SWEEPING (1)
- branch-and-bound (1)

#### Faculty / Organisational entity

- Fachbereich Informatik (33) (remove)

A Case Study on Specifikation,Detection and Resolution of IN Feature Interactions with Estelle
(1994)

We present an approach for the treatment of Feature Interactions in Intelligent Networks. The approach is based on the formal description technique Estelle and consists of three steps. For the first step, a specification style supporting the integration of additional features into a basic service is introduced . As a result, feature integration is achieved by adding specification text, i.e . on a purely syntactical level. The second step is the detection of feature interactions resulting from the integration of additional features. A formal criterion is given that can be used for the automatic detection of a particular class of feature interactions. In the third step, previously detected feature interactions are resolved. An algorithm has been devised that allows the automatical incorporation of high-level design decisions into the formal specification. The presented approach is applied to the Basic Call Service and several supplementary interacting features.

We introduce the concept of streamballs for fluid flow visualization. Streamballs are based upon implicit surface generation techniques adopted from the well-known metaballs. Their property to split or merge automatically in areas of significant divergence or convergence makes them an ideal tool for the visualization of arbitrary complex flow fields. Using convolution surfaces generated by continuous skeletons for streamball construction offers the possibility to visualize even tensor fields.

The problem to interpolate Hermite-type data (i.e. two points with attached tangent vectors) with elastic curves of prescribed tension is known to have multiple solutions. A method is presented that finds all solutions of length not exceeding one period of its curvature function. The algorithm is based on algebraic relations between discrete curvature information which allow to transform the problem into a univariate one. The method operates with curves that by construction partially interpolate the given data. Hereby the objective function of the problem is drastically simplified. A bound on the maximum curvature value is established that provides an interval containing all solutions.

Automatic proof systems are becoming more and more powerful.However, the proofs generated by these systems are not met withwide acceptance, because they are presented in a way inappropriatefor human understanding.In this paper we pursue two different, but related, aims. First wedescribe methods to structure and transform equational proofs in away that they conform to human reading conventions. We developalgorithms to impose a hierarchical structure on proof protocols fromcompletion based proof systems and to generate equational chainsfrom them.Our second aim is to demonstrate the difficulties of obtaining suchprotocols from distributed proof systems and to present our solutionto these problems for provers using the TEAMWORK method. Wealso show that proof systems using this method can give considerablehelp in structuring the proof listing in a way analogous to humanbehaviour.In addition to theoretical results we also include descriptions onalgorithms, implementation notes, examples and data on a variety ofexamples.

Best-Fit Pattern Matching
(1994)

This report shows that dispatching of methods in object oriented languages is in principle the same as best fit pattern matching. A general conceptual description of best fit pattern matching is presented. Many object oriented features are modelled by means of the general concept. This shows that simple methods, multi methods, overloading of functions, pattern matching,
dynamic and union types, and extendable records can be combined in a single comprehensive concept.

In this paper the complexity of the local solution of Fredholm integral equations
is studied. For certain Sobolev classes of multivariate periodic functions with dominating mixed derivative we prove matching lower and upper bounds. The lower bound is shown using relations to s-numbers. The upper bound is proved in a constructive way providing an implementable algorithm of optimal order based on Fourier coefficients and a hyperbolic cross approximation.

We study the complexity of local solution of Fredholm integral equations. This means that we want to compute not the full solution, but rather a functional (weighted mean, value in a point) of it. For certain Sobolev classes of multivariate periodic functions we prove matching upper and lower bounds and construct an algorithm of the optimal order, based on Fourier coefficients and a hyperbolic cross approximation.

A method for efficiently handling associativity and commutativity (AC) in implementations of (equational) theorem provers without incorporating AC as an underlying theory will be presented. The key of substantial efficiency gains resides in a more suitable representation of permutation-equations (such as f(x,f(y,z))=f(y,f(z,x)) for instance). By representing these permutation-equations through permutations in the mathematical sense (i.e. bijective func- tions :{1,..,n} {1,..,n}), and by applying adapted and specialized inference rules, we can cope more appropriately with the fact that permutation-equations are playing a particular role. Moreover, a number of restrictions concerning application and generation of permuta- tion-equations can be found that would not be possible in this extent when treating permu- tation-equations just like any other equation. Thus, further improvements in efficiency can be achieved.

Within the present paper we investigate case-based representability as well as case-based learnability of indexed families of uniformly recursive languages. Since we are mainly interested in case-based learning with respect to an arbitrary fixed similarity measure, case-based learnability of an indexed family requires its representability, first. We show that every indexed family is case- based representable by positive and negative cases. If only positive cases are allowed the class of representable families is comparatively small. Furthermore, we present results that provide some bounds concerning the necessary size of case bases. We study, in detail, how the choice of a case selection strategy influences the learning capabilities of a case-based learner. We define different case selection strategies and compare their learning power to one another. Furthermore, we elaborate the relations to Gold-style language learning from positive and both positive and negative examples.

While symbolic learning approaches encode the knowledge provided by the presentation of the cases explicitly into a symbolic representation of the concept, e.g. formulas, rules, or decision trees, case-based approaches describe learned concepts implicitly by a pair (CB; d), i.e. by a set CB of cases and a distance measure d. Given the same information, symbolic as well as the case-based approach compute a classification when a new case is presented. This poses the question if there are any differences concerning the learning power of the two approaches. In this work we will study the relationship between the case base, the measure of distance, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case-based variant. The achieved results strengthen the conjecture of the equivalence of the learning power of symbolic and casebased methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

The Basic Reference Model of ODP introduces a number of basic concepts in order to provide a common basis for the development of a coherent set of standards. To achieve this objective, a clear understanding of the basic concepts is one prerequisite. This paper makes an effort at clarifying some of the basic concepts independently of standardized or non-standardized formal description techniques. Among the basic concepts considered here are: agent, action, interaction, interaction point, architecture, behaviour, system, composition, refinement, and abstraction. In a case study, it is then shown how these basic concepts can be represented in a formal specification written in temporal logic.

Hardware / Software Codesign
(1994)

Monte Carlo integration is often used for antialiasing in rendering processes.
Due to low sampling rates only expected error estimates can be stated, and the variance can be high. In this article quasi-Monte Carlo methods are presented, achieving a guaranteed upper error bound and a convergence rate essentially as fast as usual Monte Carlo.

The radiance equation, which describes the global illumination problem in computer graphics, is a high dimensional integral equation. Estimates of the solution are usually computed on the basis of Monte Carlo methods. In this paper we propose and investigate quasi-Monte Carlo methods, which means that we replace (pseudo-) random samples by low discrepancy sequences, yielding deterministic algorithms. We carry out a comparative numerical study between Monte Carlo and quasi-Monte Carlo methods. Our results show that quasi-Monte Carlo converges considerably faster.

This paper presents fill algorithms for boundary-defined regions in raster graphics. The algorithms require only a constant size working memory. The methods presented are based on the so-called "seed fill" algorithms using the internal connectivity of the region with a given inner point. Basic methods as well as additional heuristics for speeding up the algorithm are described and verified. For different classes of regions, the time complexity of the algorithms is compared using empirical results.

The main problem in computer graphics is to solve the global illumination problem,
which is given by a Fredholm integral equation of the second kind, called the radiance equation (REQ). In order to achieve realistic images, a very complex kernel
of the integral equation, modelling all physical effects of light, must be considered. Due to this complexity Monte Carlo methods seem to be an appropriate approach to solve the REQ approximately. We show that replacing Monte Carlo by quasi-Monte Carlo in some steps of the algorithm results in a faster convergence.

The introduction of sorts to first-order automated deduc-tion has brought greater conciseness of representation and a considerablegain in efficiency by reducing search spaces. This suggests that sort in-formation can be employed in higher-order theorem proving with similarresults. This paper develops a sorted (lambda)-calculus suitable for automatictheorem proving applications. It extends the simply typed (lambda)-calculus by ahigher-order sort concept that includes term declarations and functionalbase sorts. The term declaration mechanism studied here is powerfulenough to subsume subsorting as a derived notion and therefore gives ajustification for the special form of subsort inference. We present a set oftransformations for sorted (pre-) unification and prove the nondetermin-istic completeness of the algorithm induced by these transformations.