### Refine

#### Year of publication

#### Document Type

- Report (179) (remove)

#### Language

- English (179) (remove)

#### Keywords

- numerical upscaling (7)
- Integer programming (4)
- hub location (4)
- Darcy’s law (3)
- Heston model (3)
- Lagrangian mechanics (3)
- effective heat conductivity (3)
- facility location (3)
- non-Newtonian flow in porous media (3)
- poroelasticity (3)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (179) (remove)

Recently we developed a discrete model of elastic rods with symmetric cross section suitable for a fast simulation of quasistatic deformations [33]. The model is based on Kirchhoff’s geometrically exact theory of rods. Unlike simple models of “mass & spring” type typically used in VR applications, our model provides a proper coupling of bending and torsion. The computational approach comprises a variational formulation combined with a finite difference discretization of the continuum model. Approximate solutions of the equilibrium equations for sequentially varying boundary conditions are obtained by means of energy minimization using a nonlinear CG method. As the computational performance of our model yields solution times within the range of milliseconds, our approach proves to be sufficient to simulate an interactive manipulation of such flexible rods in virtual reality applications in real time.

In this paper, we discuss approaches related to the explicit modeling of human beings in software development processes. While in most older simulation models of software development processes, esp. those of the system dynamics type, humans are only represented as a labor pool, more recent models of the discrete-event simulation type require representations of individual humans. In that case, particularities regarding the person become more relevant. These individual effects are either considered as stochastic variations of productivity, or an explanation is sought based on individual characteristics, such as skills for instance. In this paper, we explore such possibilities by recurring to some basic results in psychology, sociology, and labor science. Various specific models for representing human effects in software process simulation are discussed.

We study global and local robustness properties of several estimators for shape and scale in a generalized Pareto model. The estimators considered in this paper cover maximum likelihood estimators, skipped maximum likelihood estimators, moment-based estimators, Cramér-von-Mises Minimum Distance estimators, and, as a special case of quantile-based estimators, Pickands Estimator as well as variants of the latter tuned for higher finite sample breakdown point (FSBP), and lower variance. We further consider an estimator matching population median and median of absolute deviations to the empirical ones (MedMad); again, in order to improve its FSBP, we propose a variant using a suitable asymmetric Mad as constituent, and which may be tuned to achieve an expected FSBP of 34%. These estimators are compared to one-step estimators distinguished as optimal in the shrinking neighborhood setting, i.e., the most bias-robust estimator minimizing the maximal (asymptotic) bias and the estimator minimizing the maximal (asymptotic) MSE. For each of these estimators, we determine the FSBP, the influence function, as well as statistical accuracy measured by asymptotic bias, variance, and mean squared error—all evaluated uniformly on shrinking convex contamination neighborhoods. Finally, we check these asymptotic theoretical findings against finite sample behavior by an extensive simulation study.

Worldwide the installed capacity of renewable technologies for electricity production is
rising tremendously. The German market is particularly progressive and its regulatory
rules imply that production from renewables is decoupled from market prices and electricity
demand. Conventional generation technologies are to cover the residual demand
(defined as total demand minus production from renewables) but set the price at the
exchange. Existing electricity price models do not account for the new risks introduced
by the volatile production of renewables and their effects on the conventional demand
curve. A model for residual demand is proposed, which is used as an extension of
supply/demand electricity price models to account for renewable infeed in the market.
Infeed from wind and solar (photovoltaics) is modeled explicitly and withdrawn from
total demand. The methodology separates the impact of weather and capacity. Efficiency
is transformed on the real line using the logit-transformation and modeled as a stochastic process. Installed capacity is assumed a deterministic function of time. In a case study the residual demand model is applied to the German day-ahead market
using a supply/demand model with a deterministic supply-side representation. Price trajectories are simulated and the results are compared to market future and option
prices. The trajectories show typical features seen in market prices in recent years and the model is able to closely reproduce the structure and magnitude of market prices.
Using the simulated prices it is found that renewable infeed increases the volatility of forward prices in times of low demand, but can reduce volatility in peak hours. Prices
for different scenarios of installed wind and solar capacity are compared and the meritorder effect of increased wind and solar capacity is calculated. It is found that wind
has a stronger overall effect than solar, but both are even in peak hours.

Simulation of multibody systems (mbs) is an inherent part in developing and design of complex mechanical systems. Moreover, simulation during operation gained in importance in the recent years, e.g. for HIL-, MIL- or monitoring applications. In this paper we discuss the numerical simulation of multibody systems on different platforms. The main section of this paper deals with the simulation of an established truck model [9] on different platforms, one microcontroller and two real-time processor boards. Additional to numerical C-code the latter platforms provide the possibility to build the model with a commercial mbs tool, which is also investigated. A survey of different ways of generating code and equations of mbs models is given and discussed concerning handling, possible limitations as well as performance. The presented benchmarks are processed under terms of on-board real time applications. A further important restriction, caused by the real-time requirement, is a fixed integration step size. Whence, carefully chosen numerical integration algorithms are necessary, especially in the case of closed loops in the model. We investigate linearly-implicit time integration methods with fixed step size, so-called Rosenbrock methods, and compare them with respect to their accuracy and performance on the tested processors.

In this work we use the Parsimonious Multi–Asset Heston model recently developed in [Dimitroff et al., 2009] at Fraunhofer ITWM, Department Financial Mathematics, Kaiserslautern (Germany) and apply it to Quanto options. We give a summary of the model and its calibration scheme. A suitable transformation of the Quanto option payoff is explained and used to price Quantos within the new framework. Simulated prices are given and compared to market prices and Black–Scholes prices. We find that the new approach underprices the chosen options, but gives better results than the Black–Scholes approach, which is prevailing in the literature on Quanto options.

In this paper we deal with dierent statistical modeling of real world accident data in order to quantify the eectiveness of a safety function or a safety conguration (meaning a specic combination of safety functions) in vehicles. It is shown that the eectiveness can be estimated along the so-called relative risk, even if the eectiveness does depend on a confounding variable which may be categorical or continuous. For doing so a concrete statistical modeling is not necessary, that is the resulting estimate is of nonparametric nature. In a second step the quite usual and from a statistical point of view classical logistic regression modeling is investigated. Main emphasis has been laid on the understanding of the model and the interpretation of the occurring parameters. It is shown that the eectiveness of the safety function also can be detected via such a logistic approach and that relevant confounding variables can and should be taken into account. The interpretation of the parameters related to the confounder and the quantication of the in uence of the confounder is shown to be rather problematic. All the theoretical results are illuminated by numerical data examples.

We introduce a refined tree method to compute option prices using the stochastic volatility model of Heston. In a first step, we model the stock and variance process as two separate trees and with transition probabilities obtained by matching tree moments up to order two against the Heston model ones. The correlation between the driving Brownian motions in the Heston model is then incorporated by the node-wise adjustment of the probabilities. This adjustment, leaving the marginals fixed, optimizes the match between tree and model correlation. In some nodes, we are even able to further match moments of higher order. Numerically this gives convergence orders faster than 1/N, where N is the number of dis- cretization steps. Accuracy of our method is checked for European option prices against a semi closed-form, and our prices for both European and American options are compared to alternative approaches.

In nancial mathematics stock prices are usually modelled directly as a result of supply and demand and under the assumption that dividends are paid continuously. In contrast economic theory gives us the dividend discount model assuming that the stock price equals the present value of its future dividends. These two models need not to contradict each other - in their paper Korn and Rogers (2005) introduce a general dividend model preserving the stock price to follow a stochastic process and to be equal to the sum of all its discounted dividends. In this paper we specify the model of Korn and Rogers in a Black-Scholes framework in order to derive a closed-form solution for the pricing of American Call options under the assumption of a known next dividend followed by several stochastic dividend payments during the option's time to maturity.

We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet–defining. We show its superior computational performance by benchmarking it on a well known data set.

This work presents a new framework for Gröbner basis computations with Boolean polynomials. Boolean polynomials can be modeled in a rather simple way, with both coefficients and degree per variable lying in {0, 1}. The ring of Boolean polynomials is, however, not a polynomial ring, but rather the quotient ring of the polynomial ring over the field with two elements modulo the field equations x2 = x for each variable x. Therefore, the usual polynomial data structures seem not to be appropriate for fast Gröbner basis computations. We introduce a specialized data structure for Boolean polynomials based on zero-suppressed binary decision diagrams (ZDDs), which is capable of handling these polynomials more efficiently with respect to memory consumption and also computational speed. Furthermore, we concentrate on high-level algorithmic aspects, taking into account the new data structures as well as structural properties of Boolean polynomials. For example, a new useless-pair criterion for Gröbner basis computations in Boolean rings is introduced. One of the motivations for our work is the growing importance of formal hardware and software verification based on Boolean expressions, which suffer – besides from the complexity of the problems – from the lack of an adequate treatment of arithmetic components. We are convinced that algebraic methods are more suited and we believe that our preliminary implementation shows that Gröbner bases on specific data structures can be capable to handle problems of industrial size.

Home Health Care (HHC) services are becoming increasingly important in Europe’s aging societies. Elderly people have varying degrees of need for assistance and medical treatment. It is advantageous to allow them to live in their own homes as long as possible, since a long-term stay in a nursing home can be much more costly for the social insurance system than a treatment at home providing assistance to the required level. Therefore, HHC services are a cost-effective and flexible instrument in the social system. In Germany, organizations providing HHC services are generally either larger charities with countrywide operations or small private companies offering services only in a city or a rural area. While the former have a hierarchical organizational structure and a large number of employees, the latter typically only have some ten to twenty nurses under contract. The relationship to the patients (“customers”) is often long-term and can last for several years. Therefore acquiring and keeping satisfied customers is crucial for HHC service providers and intensive competition among them is observed.

In this article, a new model predictive control approach to nonlinear stochastic systems will be presented. The new approach is based on particle filters, which are usually used for estimating states or parameters. Here, two particle filters will be combined, the first one giving an estimate for the actual state based on the actual output of the system; the second one gives an estimate of a control input for the system. This is basically done by adopting the basic model predictive control strategies for the second particle filter. Later in this paper, this new approach is applied to a CSTR (continuous stirred-tank reactor) example and to the inverted pendulum.

Background and purpose Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Material and methods Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms “selection” and “restriction”. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle – a set constructed from precomputed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions.

To a network N(q) with determinant D(s;q) depending on a parameter vector q Î Rr via identification of some of its vertices, a network N^ (q) is assigned. The paper deals with procedures to find N^ (q), such that its determinant D^ (s;q) admits a factorization in the determinants of appropriate subnetworks, and with the estimation of the deviation of the zeros of D^ from the zeros of D. To solve the estimation problem state space methods are applied.

An algorithm for automatic parallel generation of three-dimensional unstructured computational meshes based on geometrical domain decomposition is proposed in this paper. Software package build upon proposed algorithm is described. Several practical examples of mesh generation on multiprocessor computational systems are given. It is shown that developed parallel algorithm enables us to reduce mesh generation time significantly (dozens of times). Moreover, it easily produces meshes with number of elements of order 5 · 107, construction of those on a single CPU is problematic. Questions of time consumption, efficiency of computations and quality of generated meshes are also considered.

After a short introduction to the basic ideas of lattice Boltzmann methods and a brief description of a modern parallel computer, it is shown how lattice Boltzmann schemes are successfully applied for simulating fluid flow in microstructures and calculating material properties of porous media. It is explained how lattice Boltzmann schemes compute the gradient of the velocity field without numerical differentiation. This feature is then utilised for the simulation of pseudo-plastic fluids, and numerical results are presented for a simple benchmark problem as well as for the simulation of liquid composite moulding.

A new stability preserving model reduction algorithm for discrete linear SISO-systems based on their impulse response is proposed. Similar to the Padé approximation, an equation system for the Markov parameters involving the Hankel matrix is considered, that here however is chosen to be of very high dimension. Although this equation system therefore in general cannot be solved exactly, it is proved that the approximate solution, computed via the Moore-Penrose inverse, gives rise to a stability preserving reduction scheme, a property that cannot be guaranteed for the Padé approach. Furthermore, the proposed algorithm is compared to another stability preserving reduction approach, namely the balanced truncation method, showing comparable performance of the reduced systems. The balanced truncation method however starts from a state space description of the systems and in general is expected to be more computational demanding.

We develop a framework for analyzing an executive’s own-company stockholding and work effort preferences. The executive, characterized by risk aversion and work effectiveness parameters, invests his personal wealth without constraint in the financial market, including the stock of his own company whose value he can directly influence with work effort. The executive’s utility-maximizing personal investment and work effort strategy is derived in closed-form, and an indifference utility rationale is demonstrated to determine his required compensation. Our results have implications for the practical and theoretical assessment of executive quality and the benefits of performance contracting. Assuming knowledge of the company’s non-systematic risk, our executive’s unconstrained own-company investment identifies his work effectiveness (i.e. quality), and also reflects work effort that establishes a base-level that performance contracting should seek to exceed.

Industrial analog circuits are usually designed using numerical simulation tools. To obtain a deeper circuit understanding, symbolic analysis techniques can additionally be applied. Approximation methods which reduce the complexity of symbolic expressions are needed in order to handle industrial-sized problems. This paper will give an overview to the field of symbolic analog circuit analysis. Starting with a motivation, the state-of-the-art simplification algorithms for linear as well as for nonlinear circuits are presented. The basic ideas behind the different techniques are described, whereas the technical details can be found in the cited references. Finally, the application of linear and nonlinear symbolic analysis will be shown on two example circuits.