### Refine

#### Year of publication

- 2010 (56) (remove)

#### Document Type

- Report (26)
- Doctoral Thesis (22)
- Preprint (4)
- Bachelor Thesis (1)
- Diploma Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)

#### Language

- English (56) (remove)

#### Keywords

- Erwarteter Nutzen (2)
- Lagrangian mechanics (2)
- Numerische Strömungssimulation (2)
- Portfolio Selection (2)
- Stochastische dynamische Optimierung (2)
- numerical upscaling (2)
- optimal control (2)
- portfolio choice (2)
- work effort (2)
- Abstraction (1)

#### Faculty / Organisational entity

The aim of this study is to describe the consolidation in thermoplastic tape placement
process to obtain high quality structure, making the process viable for automotive
and aerospace industrial applications. The major barrier in this technique is very
short residence time of material under the consolidation roller to accomplished complete
polymer diffusion in the bonded region. Hence investigation is performed to find
out the optimize manufacturing parameters by extensive material, process, product
testing and through process simulation.
Temperature distribution and convective heat transfer under the hot gas torch is experimentally
mapped out. Bonding process inside the laminate is the combine effect
of layers (tapes) intimate contact Dic development and resulting polymer diffusion Dh
at these contacted sections. Three energy levels are identified based on the process
velocity and hot gas flow combinations. For the low energy parameter combinations,
the energy input to the incoming tape and substrate material is limited and result in
incomplete intimate contact which restricts the bonding process. On other hand high
energy input although could increase the bonding degree Db even up to the 97%, but
also activate the thermal degradation phenomena. It is found out that the rate of polymer
healing (diffusion) and polymer crosslinking follows the Arrhenius laws with the
activation energies of 43 KJ/mol and 276 KJ/mol. The polymer crosslinking at high
temperature exposure hinder the polymer diffusion process and reduces the strength
development. So the parameters combination at intermediate energy level provides
the opportunity of continuous interlaminar strength improvement through out the layup
process.
Deformation of tape edges is identified as the dictating factor for the laminate’s transverse
strength. Tape placement with slight overlap reinforced the transverse joint by
more 10 % as compared to pure matrix joint. Finally the simulation tool developed in
this research work is used for identifying the existing limitation to achieve full consolidation.
A parameter study shows that extended consolidation either by mean of additional
pass or by increasing consolidation length widens the high strength (over 90%)
bonding degree Db contour. Thus high lay-up velocity (up to 7 m/min) is viable for industrial
production rate.

Numerical modeling of electrochemical process in Li-Ion battery is an emerging topic of great practical interest. In this work we present a Finite Volume discretization of electrochemical diffusive processes occurring during the operation of Li-Ion batteries. The system of equations is a nonlinear, time-dependent diffusive system, coupling the Li concentration and the electric potential. The system is formulated at length-scale at which two different types of domains are distinguished, one for the electrolyte and one for the active solid particles in the electrode. The domains can be of highly irregular shape, with electrolyte occupying the pore space of a porous electrode. The material parameters in each domain differ by several orders of magnitude and can be non-linear functions of Li ions concentration and/or the electrical potential. Moreover, special interface conditions are imposed at the boundary separating the electrolyte from the active solid particles. The field variables are discontinuous across such an interface and the coupling is highly non- linear, rendering direct iteration methods ineffective for such problems. We formulate a Newton iteration for an purely implicit Finite Volume discretization of the coupled system. A series of numerical examples are presented for different type of electrolyte/electrode configurations and material parameters. The convergence of the Newton method is characterized both as function of nonlinear material parameters as well as the nonlinearity in the interface conditions.

The optimal design of rotational production processes for glass wool manufacturing poses severe computational challenges to mathematicians, natural scientists and engineers. In this paper we focus exclusively on the spinning regime where thousands of viscous thermal glass jets are formed by fast air streams. Homogeneity and slenderness of the spun fibers are the quality features of the final fabric. Their prediction requires the computation of the fuidber-interactions which involves the solving of a complex three-dimensional multiphase problem with appropriate interface conditions. But this is practically impossible due to the needed high resolution and adaptive grid refinement. Therefore, we propose an asymptotic coupling concept. Treating the glass jets as viscous thermal Cosserat rods, we tackle the multiscale problem by help of momentum (drag) and heat exchange models that are derived on basis of slender-body theory and homogenization. A weak iterative coupling algorithm that is based on the combination of commercial software and self-implemented code for ow and rod solvers, respectively, makes then the simulation of the industrial process possible. For the boundary value problem of the rod we particularly suggest an adapted collocation-continuation method. Consequently, this work establishes a promising basis for future optimization strategies.

In the generalized max flow problem, the aim is to find a maximum flow in a generalized network, i.e., a network with multipliers on the arcs that specify which portion of the flow entering an arc at its tail node reaches its head node. We consider this problem for the class of series-parallel graphs. First, we study the continuous case of the problem and prove that it can be solved using a greedy approach. Based on this result, we present a combinatorial algorithm that runs in O(m*m) time and a dynamic programming algorithm with running time O(m*log(m)) that only computes the maximum flow value but not the flow itself. For the integral version of the problem, which is known to be NP-complete, we present a pseudo-polynomial algorithm.

We consider multiple objective combinatiorial optimization problems in which the first objective is of arbitrary type and the remaining objectives are either bottleneck or k-max objective functions. While the objective value of a bottleneck objective is determined by the largest cost value of any element in a feasible solution, the kth-largest element defines the objective value of the k-max objective. An efficient solution approach for the generation of the complete nondominated set is developed which is independent of the specific combinatiorial problem at hand. This implies a polynomial time algorithm for several important problem classes like shortest paths, spanning tree, and assignment problems with bottleneck objectives which are known to be NP-hard in the general multiple objective case.

Laser-induced thermotherapy (LITT) is an established minimally invasive percutaneous technique of tumor ablation. Nevertheless, there is a need to predict the effect of laser applications and optimizing irradiation planning in LITT. Optical attributes (absorption, scattering) change due to thermal denaturation. The work presents the possibility to identify these temperature dependent parameters from given temperature measurements via an optimal control problem. The solvability of the optimal control problem is analyzed and results of successful implementations are shown.

Mrázek et al. [25] proposed a unified approach to curve estimation which combines localization and regularization. Franke et al. [10] used that approach to discuss the case of the regularized local least-squares (RLLS) estimate. In this thesis we will use the unified approach of Mrázek et al. to study some asymptotic properties of local smoothers with regularization. In particular, we shall discuss the Huber M-estimate and its limiting cases towards the L2 and the L1 cases. For the regularization part, we will use quadratic regularization. Then, we will define a more general class of regularization functions. Finally, we will do a Monte Carlo simulation study to compare different types of estimates.

Mechanical and electrical properties of carbon nanofiber–ceramic nanoparticle–polymer composites
(2010)

The present research is focused on the manufacturing and analysis of composites consisting of a thermosetting polymer reinforced with fillers of nanometric dimensions. The materials were chosen to be an epoxy resin matrix and two different kinds of fillers: electrically conductive carbon nanofibers (CNFs) and ceramic titanium dioxide (TiO2) and aluminium dioxide (Al2O3) nanoparticles. In an initial step of the work, in order to understand the effect that each kind of filler had when added separately to the polymer matrix, CNF–EP and ceramic nanoparticle–EP composites were manufactured and tested. Each type of filler was dispersed in the polymer matrix using two different dispersion technologies. CNFs were dispersed in the resin with the aid of a three roll calender (TRC) whereas a torus bead mill (TML) was used in the ceramic nanoparticle case. Calendering proved to be an efficient method to disperse the untreated CNFs in the polymer matrix. The study of the physical properties of undispersed CNF composites showed that the tensile strength and the maximum sustained strain, were more sensitive to the state of dispersion of the nanofibers than the elastic modulus, fracture toughness, impact energy and electrical conductivity (for filler loadings above the percolation threshold of the system). Rheological investigation of the uncured CNF–epoxy mixture at different stages of dispersion indicated the formation of an interconnected nanofiber network within the matrix after the initial steps of calendering. CNF–EP composites showed better mechanical performance than the unmodified polymer matrix. However, the tensile modulus and strength of the CNF composites accused the presence of remaining nanofiber clusters and did not reach theoretically predicted values. Fracture toughness and resistance against impact did not seem to be so sensitive to the state of nanofiber dispersion and improved consistently with the incorporation of the CNFs. The electrical conductivity of the CNF composites saw an eight orders of magnitude percolative enhancement with increasing nanofiber content. The percolation threshold for the achieved level of CNF dispersion was found to be 0.14 vol. %. It was also determined that, for these composites, the main mechanism of electrical transmission was the electron tunnelling mechanism. Ceramic nanoparticle–EP composites were manufactured using TiO2 and Al2O3 particles as fillers in the epoxy matrix. Mechanical dispersion of the nanoparticles in the liquid polymer by means of a torus bead mill dissolver led to homogeneous distributions of particles in the matrix. Remaining particle agglomerates had a mean value of 80 nm. However, micrometer sized agglomerates could clearly be observed in the microscopical analysis of the composites, especially in the TiO2 case. The inclusion of the nanoparticles in the epoxy resin resulted in a general improvement of the modulus, strength, maximum sustained strain, fracture toughness and impact energy of the polymer matrix. Nanoparticles were able to overcome the stiffness/toughness problem. On the other hand, nanoparticle–EP composites showed lower electrical conductivity than the neat epoxy. In general, there were no significant differences between the incorporation of TiO2 or Al2O3 particles. Based on the previous results, CNFs and nanoparticles were combined as fillers to create a nanocomposite that could benefit from the electrical properties provided by the conductive CNFs and, at the same time, have improved mechanical performance thanks to the presence of the well dispersed ceramic nanoparticles. Nanoparticles and CNFs were dispersed separately to create two batches which were blended together in a dissolver mixer. This method proved effective to create well dispersed CNF–nanoparticle–epoxy composites which showed improved electrical and mechanical properties compared with the neat polymer matrix. The well dispersed ceramic nanofillers were able to introduce additional energy dissipating mechanisms in the CNF–EP composites that resulted in an improvement of their mechanical performance. With high volume loadings of nanoparticles most of the reinforcement came from the presence of the nanoparticles in the polymer matrix. Therefore, the observed trends were, in essence, similar to the ones observed in the ceramic nanoparticle–EP composites. The enhancement in the mechanical performance of the CNF composites with the inclusion of ceramic nanoparticles came at the price of an increase in the percolation threshold and a reduction of the electrical conductivity of the CNF–nanoparticle–EP composites compared with the CNF–EP materials. A modified Weber and Kamal’s fiber contact model (FCM) was used to explain the electrical behaviour of the CNF–nanoparticle–EP composites once percolation was achieved. This model was able to fit rather accurately the experimentally measured conductivity of these composites.

In a dynamic network, the quickest path problem asks for a path such that a given amount of flow can be sent from source to sink via this path in minimal time. In practical settings, for example in evacuation or transportation planning, the problem parameters might not be known exactly a-priori. It is therefore of interest to consider robust versions of these problems in which travel times and/or capacities of arcs depend on a certain scenario. In this article, min-max versions of robust quickest path problems are investigated and, depending on their complexity status, exact algorithms or fully polynomial-time approximation schemes are proposed.

Model-based fault diagnosis and fault-tolerant control for a nonlinear electro-hydraulic system
(2010)

The work presented in this thesis discusses the model-based fault diagnosis and fault-tolerant control with application to a nonlinear electro-hydraulic system. High performance control with guaranteed safety and reliability for electro-hydraulic systems is a challenging task due to the high nonlinearity and system uncertainties. This thesis developed a diagnosis integrated fault-tolerant control (FTC) strategy for the electro-hydraulic system. In fault free case the nominal controller is in operation for achieving the best performance. If the fault occurs, the controller will be automatically reconfigured based on the fault information provided by the diagnosis system. Fault diagnosis and reconfigurable controller are the key parts for the proposed methodology. The system and sensor faults both are studied in the thesis. Fault diagnosis consists of fault detection and isolation (FDI). A model-base residual generating is realized by calculating the redundant information from the system model and available signal. In this thesis differential-geometric approach is employed, which gives a general formulation of FDI problem and is more compact and transparent among various model-based approaches. The principle of residual construction with differential-geometric method is to find an unobservable distribution. It indicates the existence of a system transformation, with which the unknown system disturbance can be decoupled. With the observability codistribution algorithm the local weak observability of transformed system is ensured. A Fault detection observer for the transformed system can be constructed to generate the residual. This method cannot isolated sensor faults. In the thesis the special decision making logic (DML) is designed based on the individual signal analysis of the residuals to isolate the fault. The reconfigurable controller is designed with the backstepping technique. Backstepping method is a recursive Lyapunov-based approach and can deal with nonlinear systems. Some system variables are considered as ``virtual controls'' during the design procedure. Then the feedback control laws and the associate Lyapunov function can be constructed by following step-by-step routine. For the electro-hydraulic system adaptive backstepping controller is employed for compensate the impact of the unknown external load in the fault free case. As soon as the fault is identified, the controller can be reconfigured according to the new modeling of faulty system. The system fault is modeled as the uncertainty of system and can be tolerated by parameter adaption. The senor fault acts to the system via controller. It can be modeled as parameter uncertainty of controller. All parameters coupled with the faulty measurement are replaced by its approximation. After the reconfiguration the pre-specified control performance can be recovered. FDI integrated FTC based on backstepping technique is implemented successfully on the electro-hydraulic testbed. The on-line robust FDI and controller reconfiguration can be achieved. The tracking performance of the controlled system is guaranteed and the considered faults can be tolerated. But the problem of theoretical robustness analysis for the time delay caused by the fault diagnosis is still open.

Modeling of species and charge transport in Li-Ion Batteries based on non-equilibrium thermodynamics
(2010)

In order to improve the design of Li ion batteries the complex interplay of various physical phenomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate transport phenomena in the electrolyte and in the active particle as well as their coupling due to the electrochemical reactions at the interfaces between the electrode particles and the electrolyte will inuence the performance and the lifetime of a battery. Any modeling of the complex phenomena during the usage of a battery has therefore to be based on sound physical and chemical principles in order to allow for reliable predictions for the response of the battery to changing load conditions. We will present a modeling approach for the transport processes in the electrolyte and the electrodesbased on non-equilibrium thermodynamics and transport theory. The assumption of local charge neutrality, which is known to be valid in concentrated electrolytes, is explicitly used to identify the independent thermodynamic variables and uxes. The theory guarantees strictly positive entropy production. Dierences to other theories will be discussed.

In this article we present a method to generate random objects from a large variety of combinatorial classes according to a given distribution. Given a description of the combinatorial class and a set of sample data our method will provide an algorithm that generates objects of size n in worst-case runtime O(n^2) (O(n log(n)) can be achieved at the cost of a higher average-case runtime), with the generated objects following a distribution that closely matches the distribution of the sample data.

This paper discusses a numerical subgrid resolution approach for solving the Stokes-Brinkman system of equations, which is describing coupled ow in plain and in highly porous media. Various scientic and industrial problems are described by this system, and often the geometry and/or the permeability vary on several scales. A particular target is the process of oil ltration. In many complicated lters, the lter medium or the lter element geometry are too ne to be resolved by a feasible computational grid. The subgrid approach presented in the paper is aimed at describing how these ne details are accounted for by solving auxiliary problems in appropriately chosen grid cells on a relatively coarse computational grid. This is done via a systematic and a careful procedure of modifying and updating the coecients of the Stokes-Brinkman system in chosen cells. This numerical subgrid approach is motivated from one side from homogenization theory, from which we borrow the formulations for the so called cell problem, and from the other side from the numerical upscaling approaches, such as Multiscale Finite Volume, Multiscale Finite Element, etc. Results on the algorithm's eciency, both in terms of computational time and memory usage, are presented. Comparison with solutions on full ne grid (when possible) are presented in order to evaluate the accuracy. Advantages and limitations of the considered subgrid approach are discussed.

This work deals with the optimal control of a free surface Stokes flow which responds to an applied outer pressure. Typical applications are fiber spinning or thin film manufacturing. We present and discuss two adjoint-based optimization approaches that differ in the treatment of the free boundary as either state or control variable. In both cases the free boundary is modeled as the graph of a function. The PDE-constrained optimization problems are numerically solved by the BFGS method, where the gradient of the reduced cost function is expressed in terms of adjoint variables. Numerical results for both strategies are finally compared with respect to accuracy and efficiency.

This thesis deals with the numerical study of multiscale problems arising in the modelling of processes of the flow of fluid in plain and porous media. Many of these processes, governed by partial differential equations, are relevant in engineering, industry, and environmental studies. The overall task of modelling and simulating the filtration-related multiscale processes becomes interdisciplinary as it employs physics, mathematics and computer programming to reach its aim. Keeping the challenges in mind, the main focus is to overcome the limitations of accuracy, speed and memory and to develop novel efficient numerical algorithms which could, in part or whole, be utilized by those working in the field of porous media. This work has essentially four parts. A single grid basic algorithm and a corresponding parallel algorithm to solve the macroscopic Navier-Stokes-Brinkmann model is discussed. An upscaling subgrid algorithm is derived and numerically tested for the same model. Moving a step further in the line of multiscale methods, an iterative Mutliscale Finite Volume (iMSFV) method is developed for the Stokes-Darcy system. Additionally, the last part of the thesis deals with ways to incorporate changes occurring at different (meso) scale level. The flow equations are coupled with the Convection-Diffusion-Reaction (CDR) equation, which models the transport and capturing of particle concentrations. By employing the numerical method for the coupled flow and transport problem, we understand the interplay between the flow velocity and filtration.

Online Delay Management
(2010)

We present extensions to the Online Delay Management Problem on a Single Train Line. While a train travels along the line, it learns at each station how many of the passengers wanting to board the train have a delay of delta. If the train does not wait for them, they get delayed even more since they have to wait for the next train. Otherwise, the train waits and those passengers who were on time are delayed by delta. The problem consists in deciding when to wait in order to minimize the total delay of all passengers on the train line. We provide an improved lower bound on the competitive ratio of any deterministic online algorithm solving the problem using game tree evaluation. For the extension of the original model to two possible passenger delays delta_1 and delta_2, we present a 3-competitive deterministic online algorithm. Moreover, we study an objective function modeling the refund system of the German national railway company, which pays passengers with a delay of at least Delta a part of their ticket price back. In this setting, the aim is to maximize the profit. We show that there cannot be a deterministic competitive online algorithm for this problem and present a 2-competitive randomized algorithm.

In the classical Merton investment problem of maximizing the expected utility from terminal wealth and intermediate consumption stock prices are independent of the investor who is optimizing his investment strategy. This is reasonable as long as the considered investor is small and thus does not influence the asset prices. However for an investor whose actions may affect the financial market the framework of the classical investment problem turns out to be inappropriate. In this thesis we provide a new approach to the field of large investor models. We study the optimal investment problem of a large investor in a jump-diffusion market which is in one of two states or regimes. The investor’s portfolio proportions as well as his consumption rate affect the intensity of transitions between the different regimes. Thus the investor is ’large’ in the sense that his investment decisions are interpreted by the market as signals: If, for instance, the large investor holds 25% of his wealth in a certain asset then the market may regard this as evidence for the corresponding asset to be priced incorrectly, and a regime shift becomes likely. More specifically, the large investor as modeled here may be the manager of a big mutual fund, a big insurance company or a sovereign wealth fund, or the executive of a company whose stocks are in his own portfolio. Typically, such investors have to disclose their portfolio allocations which impacts on market prices. But even if a large investor does not disclose his portfolio composition as it is the case of several hedge funds then the other market participants may speculate about the investor’s strategy which finally could influence the asset prices. Since the investor’s strategy only impacts on the regime shift intensities the asset prices do not necessarily react instantaneously. Our model is a generalization of the two-states version of the Bäuerle-Rieder model. Hence as the Bäuerle-Rieder model it is suitable for long investment periods during which market conditions could change. The fact that the investor’s influence enters the intensities of the transitions between the two states enables us to solve the investment problem of maximizing the expected utility from terminal wealth and intermediate consumption explicitly. We present the optimal investment strategy for a large investor with CRRA utility for three different kinds of strategy-dependent regime shift intensities – constant, step and affine intensity functions. In each case we derive the large investor’s optimal strategy in explicit form only dependent on the solution of a system of coupled ODEs of which we show that it admits a unique global solution. The thesis is organized as follows. In Section 2 we repeat the classical Merton investment problem of a small investor who does not influence the market. Further the Bäuerle-Rieder investment problem in which the market states follow a Markov chain with constant transition intensities is discussed. Section 3 introduces the aforementioned investment problem of a large investor. Besides the mathematical framework and the HJB-system we present a verification theorem that is necessary to verify the optimality of the solutions to the investment problem that we derive later on. The explicit derivation of the optimal investment strategy for a large investor with power utility is given in Section 4. For three kinds of intensity functions – constant, step and affine – we give the optimal solution and verify that the corresponding ODE-system admits a unique global solution. In case of the strategy-dependent intensity functions we distinguish three particular kinds of this dependency – portfolio-dependency, consumption-dependency and combined portfolio- and consumption-dependency. The corresponding results for an investor having logarithmic utility are shown in Section 5. In the subsequent Section 6 we consider the special case of a market consisting of only two correlated stocks besides the money market account. We analyze the investor’s optimal strategy when only the position in one of those two assets affects the market state whereas the position in the other asset is irrelevant for the regime switches. Various comparisons of the derived investment problems are presented in Section 7. Besides the comparisons of the particular problems with each other we also dwell on the sensitivity of the solution concerning the parameters of the intensity functions. Finally we consider the loss the large investor had to face if he neglected his influence on the market. In Section 8 we conclude the thesis.

The scope of this paper is to enhance the model for the own-company stockholder (given in Desmettre, Gould and Szimayer (2010)), who can voluntarily performance-link his personal wealth to his management success by acquiring stocks in the own-company whose value he can directly influence via spending work effort. The executive is thereby characterized by a parameter of risk aversion and the two work effectiveness parameters inverse work productivity and disutility stress. We extend the model to a constant absolute risk aversion framework using an exponential utility/disutility set-up. A closed-form solution is given for the optimal work effort an executive will apply and we derive the optimal investment strategies of the executive. Furthermore, we determine an up-front fair cash compensation applying an indifference utility rationale. Our study shows to a large extent that the results previously obtained are robust under the choice of the utility/disutility set-up.

In this work, we develop a framework for analyzing an executive’s own- company stockholding and work effort preferences. The executive, character- ized by risk aversion and work effectiveness parameters, invests his personal wealth without constraint in the financial market, including the stock of his own company whose value he can directly influence with work effort. The executive’s utility-maximizing personal investment and work effort strategy is derived in closed form for logarithmic and power utility and for exponential utility for the case of zero interest rates. Additionally, a utility indifference rationale is applied to determine his fair compensation. Being unconstrained by performance contracting, the executive’s work effort strategy establishes a base case for theoretical or empirical assessment of the benefits or otherwise of constraining executives with performance contracting. Further, we consider a highly-qualified individual with respect to her choice between two distinct career paths. She can choose between a mid-level management position in a large company and an executive position within a smaller listed company with the possibility to directly affect the company’s share price. She invests in the financial market including the share of the smaller listed company. The utility maximizing strategy from consumption, investment, and work effort is derived in closed form for logarithmic utility and power utility. Conditions for the individual to pursue her career with the smaller listed company are obtained. The participation constraint is formulated in terms of the salary differential between the two positions. The smaller listed company can offer less salary. The salary shortfall is offset by the possibilityto benefit from her work effort by acquiring own-company shares. This givesinsight into aspects of optimal contract design. Our framework is applicable to the pharmaceutical and financial industry, as well as the IT sector.

We present some optimality results for robust Kalman filtering. To this end, we introduce the general setup of state space models which will not be limited to a Euclidean or time-discrete framework. We pose the problem of state reconstruction and repeat the classical existing algorithms in this context. We then extend the ideal-model setup allowing for outliers which in this context may be system-endogenous or -exogenous, inducing the somewhat conflicting goals of tracking and attenuation. In quite a general framework, we solve corresponding minimax MSE-problems for both types of outliers separately, resulting in saddle-points consisting of an optimally-robust procedure and a corresponding least favorable outlier situation. Still insisting on recursivity, we obtain an operational solution, the rLS filter and variants of it. Exactly robust-optimal filters would need knowledge of certain hard-to-compute conditional means in the ideal model; things would be much easier if these conditional means were linear. Hence, it is important to quantify the deviation of the exact conditional mean from linearity. We obtain a somewhat surprising characterization of linearity for the conditional expectation in this setting. Combining both optimal filter types (for system-endogenous and -exogenous situation) we come up with a delayed hybrid filter which is able to treat both types of outliers simultaneously. Keywords: robustness, Kalman Filter, innovation outlier, additive outlier