### Refine

#### Year of publication

- 2010 (56) (remove)

#### Document Type

- Report (26)
- Doctoral Thesis (22)
- Preprint (4)
- Bachelor Thesis (1)
- Diploma Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)

#### Language

- English (56) (remove)

#### Keywords

- Erwarteter Nutzen (2)
- Lagrangian mechanics (2)
- Numerische Strömungssimulation (2)
- Portfolio Selection (2)
- Stochastische dynamische Optimierung (2)
- numerical upscaling (2)
- optimal control (2)
- portfolio choice (2)
- work effort (2)
- Abstraction (1)

#### Faculty / Organisational entity

In this paper a three dimensional stochastic model for the lay-down of fibers on a moving conveyor belt in the production process of nonwoven materials is derived. The model is based on stochastic diferential equations describing the resulting position of the fiber on the belt under the influence of turbulent air ows. The model presented here is an extension of an existing surrogate model, see [6, 3].

A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics. By exploiting Kirchho's kinetic analogy, the potential energy density of a rod is a function on the tangent bundle of the conguration manifold and thus formally corresponds to the Lagrangian function of a dynamical system. The equilibrium equations are derived from a variational principle using a formulation that involves null{space matrices. In this formulation, no Lagrange multipliers are necessary to enforce orthonormality of the directors. Noether's theorem relates rst integrals of the equilibrium equations to Lie group actions on the conguration bundle, so{called symmetries. The symmetries relevant for rod mechanics are frame{indierence, isotropy and uniformity. We show that a completely analogous and self{contained theory of discrete rods can be formulated in which the arc{length is a discrete variable ab initio. In this formulation, the potential energy density is dened directly on pairs of points along the arc{length of the rod, in analogy to Veselov's discrete reformulation of Lagrangian mechanics. A discrete version of Noether's theorem then identies exact rst integrals of the discrete equilibrium equations. These exact conservation properties confer the discrete solutions accuracy and robustness, as demonstrated by selected examples of application. Copyright c 2010 John Wiley & Sons, Ltd.

A prime motivation for using XML to directly represent pieces of information is the ability of supporting ad-hoc or 'schema-later' settings. In such scenarios, modeling data under loose data constraints is essential. Of course, the flexibility of XML comes at a price: the absence of a rigid, regular, and homogeneous structure makes many aspects of data management more challenging. Such malleable data formats can also lead to severe information quality problems, because the risk of storing inconsistent and incorrect data is greatly increased. A prominent example of such problems is the appearance of the so-called fuzzy duplicates, i.e., multiple and non-identical representations of a real-world entity. Similarity joins correlating XML document fragments that are similar can be used as core operators to support the identification of fuzzy duplicates. However, similarity assessment is especially difficult on XML datasets because structure, besides textual information, may exhibit variations in document fragments representing the same real-world entity. Moreover, similarity computation is substantially more expensive for tree-structured objects and, thus, is a serious performance concern. This thesis describes the design and implementation of an effective, flexible, and high-performance XML-based similarity join framework. As main contributions, we present novel structure-conscious similarity functions for XML trees - either considering XML structure in isolation or combined with textual information -, mechanisms to support the selection of relevant information from XML trees and organization of this information into a suitable format for similarity calculation, and efficient algorithms for large-scale identification of similar, set-represented objects. Finally, we validate the applicability of our techniques by integrating our framework into a native XML database management system; in this context we address several issues around the integration of similarity operations into traditional database architectures.

A number of water flow problems in porous media are modelled by Richards’ equation [1]. There exist a lot of different applications of this model. We are concerned with the simulation of the pressing section of a paper machine. This part of the industrial process provides the dewatering of the paper layer by the use of clothings, i.e. press felts, which absorb the water during pressing [2]. A system of nips are formed in the simplest case by rolls, which increase sheet dryness by pressing against each other (see Figure 1). A lot of theoretical studies were done for Richards’ equation (see [3], [4] and references therein). Most articles consider the case of x-independent coefficients. This simplifies the system considerably since, after Kirchhoff’s transformation of the problem, the elliptic operator becomes linear. In our case this condition is not satisfied and we have to consider nonlinear operator of second order. Moreover, all these articles are concerned with the nonstationary problem, while we are interested in the stationary case. Due to complexity of the physical process our problem has a specific feature. An additional convective term appears in our model because the porous media moves with the constant velocity through the pressing rolls. This term is zero in immobile porous media. We are not aware of papers, which deal with such kind of modified steady Richards’ problem. The goal of this paper is to obtain the stability results, to show the existence of a solution to the discrete problem, to prove the convergence of the approximate solution to the weak solution of the modified steady Richards’ equation, which describes the transport processes in the pressing section. In Section 2 we present the model which we consider. In Section 3 a numerical scheme obtained by the finite volume method is given. The main part of this paper is theoretical studies, which are given in Section 4. Section 5 presents a numerical experiment. The conclusion of this work is given in Section 6.

The modelling of hedge funds poses a difficult problem since the available reported data sets are often small and incomplete. We propose a switching regression model for hedge funds, in which the coefficients are able to switch between different regimes. The coefficients are governed by a Markov chain in discrete time. The different states of the Markov chain represent different states of the economy, which influence the performance of the independent variables. Hedge fund indices are chosen as regressors. The parameter estimation for the switching parameter as well as for the switching error term is done through a filtering technique for hidden Markov models developed by Elliott (1994). Recursive parameter estimates are calculated through a filter-based EM-algorithm, which uses the hidden information of the underlying Markov chain. Our switching regression model is applied on hedge fund series and hedge fund indices from the HFR database.

Wireless sensor networks are the driving force behind many popular and interdisciplinary research areas, such as environmental monitoring, building automation, healthcare and assisted living applications. Requirements like compactness, high integration of sensors, flexibility, and power efficiency are often very different and cannot be fulfilled by state-of-the-art node platforms at once. In this paper, we present and analyze AmICA: a flexible, compact, easy-to-program, and low-power node platform. Developed from scratch and including a node, a basic communication protocol, and a debugging toolkit, it assists in an user-friendly rapid application development. The general purpose nature of AmICA was evaluated in two practical applications with diametric requirements. Our analysis shows that AmICA nodes are 67% smaller than BTnodes, have five times more sensors than Mica2Dot and consume 72% less energy than the state-of-the-art TelosB mote in sleep mode.

Wireless Sensor Networks (WSN) are dynamically-arranged networks typically composed of a large number of arbitrarily-distributed sensor nodes with computing capabilities contributing to –at least– one common application. The main characteristic of these networks is that of being functionally constrained due to a scarce availability of resources and strong dependence on uncontrollable environmental factors. These conditions introduce severe restrictions on the applicability of classic real-time methods aiming at guaranteeing time-bounded communications. Existing real-time solutions tend to apply concepts that were originally not conceived for sensor networks, idealizing realistic application scenarios and overlooking at important design limitations. This results in a number of misleading practices contributing to approaches of restricted validity in real-world scenarios. Amending the confrontation between WSNs and real-time objectives starts with a review of the basic fundamentals of existing approaches. In doing so, this thesis presents an alternative approach based on a generalized timeliness notion suitable to the particularities of WSNs. The new conceptual notion allows the definition of feasible real-time objectives opening a new scope of possibilities not constrained to idealized systems. The core of this thesis is based on the definition and application of Quality of Service (QoS) trade-offs between timeliness and other significant QoS metrics. The analysis of local and global trade-offs provides a step-by-step methodology identifying the correlations between these quality metrics. This association enables the definition of alternative trade-off configurations (set points) influencing the quality performance of the network at selected instants of time. With the basic grounds established, the above concepts are embedded in a simple routing protocol constituting a proof of concept for the validity of the presented analysis. Extensive evaluations under realistic scenarios are driven on simulation environments as well as real testbeds, validating the consistency of this approach.

It has been observed that for understanding the biological function of certain RNA molecules, one has to study joint secondary structures of interacting pairs of RNA. In this thesis, a new approach for predicting the joint structure is proposed and implemented. For this, we introduce the class of m-dimensional context-free grammars --- an extension of stochastic context-free grammars to multiple dimensions --- and present an Earley-style semiring parser for this class. Additionally, we develop and thoroughly discuss an implementation variant of Earley parsers tailored to efficiently handle dense grammars, which embraces the grammars used for structure prediction. A currently proposed partitioning scheme for joint secondary structures is transferred into a two-dimensional context-free grammar, which in turn is used as a stochastic model for RNA-RNA interaction. This model is trained on actual data and then used for predicting most likely joint structures for given RNA molecules. While this technique has been widely used for secondary structure prediction of single molecules, RNA-RNA interaction was hardly approached this way in the past. Although our parser has O(n^3 m^3) time complexity and O(n^2 m^2) space complexity for two RNA molecules of sizes n and m, it remains practically applicable for typical sizes if enough memory is available. Experiments show that our parser is much more efficient for this application than classical Earley parsers. Moreover the predictions of joint structures are comparable in quality to current energy minimization approaches.

Annual Report 2009
(2010)

Annual Report, Jahrbuch AG Magnetismus

This work deals with the modeling and simulation of slender viscous jets exposed to gravity and rotation, as they occur in rotational spinning processes. In terms of slender-body theory we show the asymptotic reduction of a viscous Cosserat rod to a string system for vanishing slenderness parameter. We propose two string models, i.e. inertial and viscous-inertial string models, that differ in the closure conditions and hence yield a boundary value problem and an interface problem, respectively. We investigate the existence regimes of the string models in the four-parametric space of Froude, Rossby, Reynolds numbers and jet length. The convergence regimes where the respective string solution is the asymptotic limit to the rod turn out to be disjoint and to cover nearly the whole parameter space. We explore the transition hyperplane and derive analytically low and high Reynolds number limits. Numerical studies of the stationary jet behavior for different parameter ranges complete the work.

In this work a 3-dimensional contact elasticity problem for a thin fiber and a rigid foundation is studied. We describe the contact condition by a linear Robin-condition (by meaning of the penalized and linearized non-penetration and friction conditions).
The dimension of the problem is reduced by an asymptotic approach. Scaling the Robin parameters appropriately we obtain a recurrent chain of Neumann type boundary value problems which are considered only in the microscopic scale. The problem for the leading term is a homogeneous Neumann problem, hence the leading term depends only on the slow variable. This motivates the choice of a multiplicative ansatz in the asymptotic expansion.
The theoretical results are illustrated with numerical examples performed with a commercial finite-element software-tool.

Wetlands are special areas that they offer habitat for terrestrial and water life. Wetlands are nest sides also for amphibian, for this reason wetlands offer wide range diversity for species. Wetlands are also reproduction regions for birds. Wetlands have special importance for ecosystem because they obstruct erosion. Wetlands absorb contaminants from water therefore wetlands contribute to clean water and they offer more potable water. Wetlands obstruct waterflood. In that case wetlands must be maintained and conserved. Wetlands must be conserved because wetlands vanish very rapidly because of contamination, excessively agriculture, urban sprawl, dams…etc. this PhD thesis contributes to solve problems of wetlands that they are affected from urbanization especially metropolitan areas. Growth of cities requires more land for settlements; the more settlements bring about the more urban sprawl. The more urban sprawl deteriorates more natural regions. In this cycle wetlands are also affected from urbanization effects. In this sense some precautions should be developed in order to protect wetlands from urbanization effect. These precautions should include anticipation about effects of urbanization. An important tool for conserving wetlands and protecting these regions from cities is land uses and land use planning in city and regional planning. First step of land use planning is determination of settlement appropriateness. Settlement appropriateness contributes to choose correct locations for settlement in this respect wetlands can be affected in minimum level from urban sprawl. This PhD thesis inquires a method about buffer zones around wetlands and Thresholds in basin of wetlands; and this method is examined in two case study areas Mogan and Büyükçekmece Lake. According to results of Mogan and Büyükçekmece Lake the PhD method will be generalized to other quasi wetlands that they exist near cities and are affected from urban sprawl.

In this article, we summarise the rotation-free and quaternionic parametrisation of a rigid body. We derive and explain the close interrelations between both parametrisations. The internal constraints due to the redundancies in the parametrisations, which lead to DAEs, are handled with the null space technique. We treat both single rigid bodies and general multibody systems with joints, which lead to external joint constraints. Several numerical examples compare both formalisms to the index reduced versions of the corresponding standard formulations.

Ever since Mark Weiser’s vision of Ubiquitous Computing the importance of context has increased in the computer science domain. Future Ambient Intelligent Environments will assist humans in their everyday activities, even without them being constantly aware of it. Objects in such environments will have small computers embedded into them which have the ability to predict human needs from the current context and adapt their behavior accordingly. This vision equally applies to future production environments. In modern factories workers and technical staff members are confronted with a multitude of devices from various manufacturers, all with different user interfaces, interaction concepts and degrees of complexity. Production processes are highly dynamic, whole modules can be exchanged or restructured. Both factors force users to continuously change their mental model of the environment. This complicates their workflows and leads to avoidable user errors or slips in judgement. In an Ambient Intelligent Production Environment these challenges have to be approached. The SmartMote is a universal control device for ambient intelligent production environments like the SmartFactoryKL. It copes with the problems mentioned above by integrating all the user interfaces into a single, holistic and mobile device. Following an automated Model-Based User Interface Development (MBUID) process it generates a fully functional graphical user interface from an abstract task-based description of the environment during run-time. This work introduces an approach to integrating context, namely the user’s location, as an adaptation basis into the MBUID process. A Context Model is specified, which stores location information in a formal and precise way. Connected sensors continuously update the model with new values. The model is complemented by a reasoning component which uses an extensible set of rules. These rules are used to derive more abstract context information from basic sensor data and for providing this information to the MBUID process. The feasibility of the approach is shown by using the example of Interaction Zones, which let developers describe different task models depending on the user’s location. Using the context model to determine when a user enters or leaves a zone, the generator can adapt the graphical user interface accordingly. Context-awareness and the potential to adapt to the current context of use are key requirements of applications in ambient intelligent environments. The approach presented here provides a clear procedure and extension scheme for the consideration of additional context types. As context has significant influence on the overall User Experience, this results not only in a better usefulness, but also in an improved usability of the SmartMote.

In robotics, information is often regarded as a means to an end. The question of how to structure information and how to bridge the semantic gap between different levels of abstraction in a uniform way is still widely regarded as a technical issue. Ignoring these challenges appears to lead robotics into a similar stasis as experienced in the software industry of the late 1960s. From the beginning of the software crisis until today, numerous methods, techniques, and tools for managing the increasing complexity of software systems have evolved. The attempt to transfer several of these ideas towards applications in robotics yielded various control architectures, frameworks, and process models. These attempts mainly provide modularisation schemata which suggest how to decompose a complex system into less complex subsystems. The schematisation of representation and information ﬂow however is mostly ignored. In this work, a set of design schemata is proposed which is embedded into an action/perception-oriented design methodology to promote thorough abstractions between distinct levels of control. Action-oriented design decomposes control systems top-down and sensor data is extracted from the environment as required. This comes with the problem that information is often condensed in a premature fashion. That way, sensor processing is dependent on the control system design resulting in a monolithical system structure with limited options for reusability. In contrast, perception-oriented design constructs control systems bottom-up starting with the extraction of environment information from sensor data. The extracted entities are placed into structures which evolve with the development of the sensor processing algorithms. In consequence, the control system is strictly dependent on the sensor processing algorithms which again results in a monolithic system. In their particular domain, both design approaches have great advantages but fail to create inherently modular systems. The design approach proposed in this work combines the strengths of action orientation and perception orientation into one coherent methodology without inheriting their weaknesses. More precisely, design schemata for representation, translation, and fusion of environmental information are developed which establish thorough abstraction mechanisms between components. The explicit introduction of abstractions particularly supports extensibility and scalability of robot control systems by design.

The aim of this thesis was to link Computational Fluid Dynamics (CFD) and Population Balance Modelling (PBM) to gain a combined model for the prediction of counter-current liquid-liquid extraction columns. Parts of the doctoral thesis project were done in close cooperation with the Fraunhofer ITWM. Their in-house CFD code Finite Pointset Method (FPM) was further developed for two-phase simulations and used for the CFD-PBM coupling. The coupling and all simulations were also carried out in the commercial CFD code Fluent in parallel. For the solution methods of the PBM there was a close cooperation with Prof. Attarakih from the Al-Balqa Applied University in Amman, Jordan, who developed a new adaptive method, the Sectional Quadrature Method of Moments (SQMOM). At the beginning of the project, there was a lack of two-phase liquid-liquid CFD simulations and their experimental validation in literature. Therefore, stand-alone CFD simulations without PBM were carried out both in FPM and Fluent to test the predictivity of CFD for stirred liquid-liquid extraction columns. The simulations were validated by Particle Image Velocimetry (PIV) measurements. The two-phase PIV measurements were possible when using an iso-optical system, where the refractive indices of both liquid phases are identical. These investigations were done in segments of two Rotating Disc Contactors with 150mm and 450mm diameter to validate CFD at lab and at industrial scale. CFD results of the aqueous phase velocities, hold-up, droplet raising velocities and turbulent energy dissipation were compared to experimental data. The results show that CFD can predict most phenomena and there was an overall good agreement. In the next steps, different solution methods for the PBM, e.g. the SQMOM and the Quadrature Method of Moments (QMOM) were implemented, varied and tested in Fluent and FPM in a two-fluid model. In addition, different closures for coalescence and breakage were implemented to predict drop size distributions and Sauter mean diameters in the RDC DN150 column. These results show that a prediction of the droplet size distribution is possible, even when no adjustable parameters are used. A combined multi-fluid CFD-PBM model was developed by means of the SQMOM to overcome drawbacks of the two-fluid approach. Benefits of the multi-fluid approach could be shown, but the high computational load was also visible. Therefore, finally, the One Primary One Secondary Particle Method (OPOSPM), which is a very easy and efficient special case of the SQMOM, was introduced in CFD to simulate a full pilot plant column of the RDC DN150. The OPOSPM offers the possibility of a one equation model for the solution of the PBM in CFD. The predicted results for the mean droplet diameter and the dispersed phase hold up agree well with literature data. The results also show that the new CFD-PBM model is very efficient from computational point of view (two times less than the QMOM and five times less than the method of classes). The overall results give rise to the expectation that the coupled CFD-PBM model will lead to a better, faster and more cost-efficient layout of counter-current extraction columns in future.

Prostate cancer preferentially metastasizes to the skeleton and abundant evidence exists that osteoblasts specifically support the metastatic process, including cancer stem cell niche formation. At early stages of bone metastasis, crosstalk of prostate cancer cells and osteoblasts through soluble molecules results in a decrease of cancer cell proliferation, accompanied by altered adhesive properties and increased expression of bone-specific genes, or osteomimicry. Osteoblasts synthesize a plethora of biologically active factors, which comprise the unique bone microenvironment. By means of quantitative real-time RT-PCR it was determined that exposure to the osteoblast secretome induced gene expression changes in prostate cancer cells, including the upregulation of osteomimetic genes such as BMP2, AP, COL1A1, OPG and RANKL. IL6 and TGFbeta1 signaling pathway components also became upregulated at early time points. Moreover, osteoblast-released IL6 and TGFbeta1 contributed to the upregulation of OPG mRNA in LNCaP. Thus, the earliest response of prostate cancer cells to osteoblast-released factors, which ultimately cause metastatic cells to assume an osteomimetic phenotype, involved activation of paracrine and autocrine IL6 and TGFbeta signaling. On the other hand, a microarray analysis showed that osteoblasts exposed to the secretome of prostate cancer cells exhibited gene expression alterations suggestive of repressed proliferation, decreased matrix synthesis and inhibited immune response, which together indicate enhanced preosteocytic differentiation. TGFbeta signaling, known to inhibit osteoblast maturation, was strongly suppressed, as shown by elevated expression of negative regulators, downregulation of pathway components and of numerous target genes. Transcriptional downregulation of osteoblast inhibitory molecules such as DKK1 and FST also occurred, with concomitant upregulation of the osteoinductive molecules ADM, STC1 and BMP2, and of the transcription factors CBFA1 and HES1, which promote osteoblast differentiation. Finally, the mRNA encoding NPPB, the precursor of a molecule implicated in the inhibition of TGFbetaeffects, in bone formation and in stem cell maintenance, became upregulated after coculture both in osteoblasts and in prostate cancer cells. These results provide an insight into potential mechanisms of dysregulated bone formation in metastatic prostate cancer, as well as mechanisms by which osteoblasts might enhance the invasive, osteomimetic and stem cell-like properties of the tumor cells. In particular, the differential modulation of TGFbetasignaling in prostate cancer cells and osteoblasts appears to merit further research.

In the Dynamic Multi-Period Routing Problem, one is given a new set of requests at the beginning of each time period. The aim is to assign requests to dates such that all requests are fulfilled by their deadline and such that the total cost for fulling the requests is minimized. We consider a generalization of the problem which allows two classes of requests: The 1st class requests can only be fulfilled by the 1st class server, whereas the 2nd class requests can be fulfilled by either the 1st or 2nd class server. For each tour, the 1st class server incurs a cost that is alpha times the cost of the 2nd class server, and in each period, only one server can be used. At the beginning of each period, the new requests need to be assigned to service dates. The aim is to make these assignments such that the sum of the costs for all tours over the planning horizon is minimized. We study the problem with requests located on the nonnegative real line and prove that there cannot be a deterministic online algorithm with a competitive ratio better than alpha. However, if we require the difference between release and deadline date to be equal for all requests, we can show that there is a min{2*alpha, 2 + 2/alpha}-competitive algorithm.

A number of natural products are known that contain an enamide as a key structural feature. This functionality is a very important subunit in various biologically active products and pharmaceutical drug lead compounds. In addition, enamides serve as highly versatile synthetic intermediates, particularly in the pericyclic reaction, formation of heterocycles, cross-coupling and in asymmetric synthesis. As a result, several protocols have been devised for the preparation of enamides. Traditional syntheses include condensation of aldehydes and ketones with amides or from hydroxylamines and acetic anhydride, require harsh conditions and yield mixtures of E/Z products. Several metal catalyzed approaches have been also investigated, such as isomerization of N-allylamides and catalytic cross-coupling of amides with vinyl halides or pseudohalides. These protocols proceed under milder conditions but suffer from the limited availability of these starting materials. The research described in this dissertation focuses on efficient and atom-economic preparation of enamides and thioenamides, using readily available starting materials. We developed catalyst systems generated in situ from bis(2-methallyl)-cycloocta-1,5-diene-ruthenium(II), phosphines and Lewis acid or base, efficiently catalyze the addition of primary amides and thioamides to terminal alkynes with exclusive formation of the anti-Markovnikov products in high yield and stereoselectivity under mild reaction conditions. The generality of the newly developed methodologies is demonstrated by common functional group tolerance. Furthermore, Markovnikov products were formed via phosphine-catalyzed addition of cyclic amides to phenylacetylene derivatives. The hydroamidation protocol of primary amides was successfully used in the synthesis of naturally occurring compounds, such as alatamide, lansiumamide A, botryllamides C and E, and the key intermediate in the synthesis of aristolactam. In order to investigate the reaction mechanism, the addition of various amides and carboxylic acids to terminal alkynes was performed using deuterium labeled starting materials and followed by in situ NMR and GC-MS studies.

A classical conjecture in the representation theory of finite groups, the McKay conjecture, states that for any finite group and prime number p the number of complex irreducible characters of degree prime to p is equal to the number of complex irreducible characters of degree prime to p of the normalizer of a p-Sylow subgroup. Recently a reduction theorem was proved by Isaacs, Malle and Navarro: If all simple groups are “good”, then the McKay conjecture holds. In this work we are concerned with the problem of goodness for finite groups of Lie type in their defining characteristic. A simple group is called “good” if certain equivariant bijections between the involved character sets exist. We present a structural approach to the construction of such a bijection by utilizing the so-called “Steinberg-Map”. This yields very natural bijections and we prove most of the desired properties.