### Refine

#### Year of publication

- 1998 (116) (remove)

#### Document Type

- Preprint (90)
- Article (18)
- Report (3)
- Lecture (2)
- Diploma Thesis (1)
- Doctoral Thesis (1)
- Periodical Part (1)

#### Language

- English (116) (remove)

#### Keywords

- AG-RESY (10)
- PARO (10)
- SKALP (9)
- Case Based Reasoning (4)
- industrial robots (4)
- motion planning (3)
- parallel processing (3)
- CIM-OSA (2)
- Kalman filtering (2)
- TOVE (2)
- coset enumeration (2)
- on-line algorithms (2)
- particle methods (2)
- path planning (2)
- search algorithms (2)
- subgroup problem (2)
- Analysis (1)
- Boltzmann Equation (1)
- CFD (1)
- Complexity (1)
- Correspondence with other notations (1)
- Dependency Factors (1)
- Dirichlet series (1)
- Distributed Software Development (1)
- EXPRESS-G (1)
- Electron states in low-dimensional structures (1)
- Enterprise modeling (1)
- Enterprise modelling (1)
- Funktionalanalysis (1)
- Grid Graphs (1)
- Gröbner base (1)
- Gröbner bases (1)
- Gröbner bases in monoid and group rings (1)
- HANDFLEX (1)
- HOT (1)
- Hilbert transform (1)
- Ill-Posed Problems (1)
- Internet Based Software Process Management Environment (1)
- Kallianpur-Robbins law (1)
- Learning systems (1)
- Linear Integral Equations (1)
- MEGI (1)
- Monoid and group rings (1)
- Monotone dynamical systems (1)
- Navier-Stokes (1)
- Nonlinear dynamics (1)
- Numerical Simulation (1)
- Ontolingua (1)
- Ontology (1)
- PC-based robot control (1)
- PERA (1)
- Quantum mechanics (1)
- Rarefied Gas Flows (1)
- Rayleigh Number (1)
- Recurrent neural networks (1)
- Riemann-Siegel formula (1)
- Robust reliability (1)
- Simultaneous quantifier elimination (1)
- Singularity theory (1)
- Tunneling (1)
- UML (1)
- Vorlesungsskript (1)
- WETICE 98 (1)
- Wannier-Bloch resonance states (1)
- Wannier-Stark systems (1)
- adaptive grid generation (1)
- area loss (1)
- automated proof planner (1)
- bi-directional search (1)
- center and median problems (1)
- chaos (1)
- client/server-architecture (1)
- confluence (1)
- convex models (1)
- crack diagnosis (1)
- cusp forms (1)
- da (1)
- damage diagnosis (1)
- discretization (1)
- distributed and parallel processing (1)
- distributed control system (1)
- distributed processing (1)
- domain decomposition (1)
- exact fully discrete vectorial wavelet transform (1)
- fixpoint theorem (1)
- fluid dynamic equations (1)
- graph search (1)
- higher order (1)
- higher order tableau (1)
- initial value representation (1)
- kinetic equations (1)
- kinetic models (1)
- konvexe Analysis (1)
- level set method (1)
- lifetime statistics (1)
- lifetimes (1)
- locational analysis (1)
- log averaging methods (1)
- monoid- and group-presentations (1)
- moving contact line (1)
- multi-hypothesis diagnosis (1)
- natural language semantics (1)
- non-linear dynamics (1)
- numerics for pdes (1)
- occupation measure (1)
- off-line programming (1)
- planar Brownian motion (1)
- prefix reduction (1)
- prefix string rewriting (1)
- prefix-rewriting (1)
- proof presentation (1)
- pyramid scheme (1)
- quantum chaos (1)
- quantum mechanics (1)
- quasienergy (1)
- rarefied gas flows (1)
- ratio ergodic theorem (1)
- reinitialization (1)
- resonances (1)
- robot calibration (1)
- robot control architectures (1)
- robot motion planning (1)
- rotating machinery (1)
- scale discrete spherical vector wavelets (1)
- search algorithm (1)
- search alogorithms (1)
- semiclassical (1)
- sequent calculus (1)
- skolemization (1)
- stationary solutions (1)
- steady Boltzmann equation (1)
- strong theorems (1)
- subgroup presentation problem (1)
- theorem prover (1)
- trajectory optimization (1)
- variable cardinality case (1)
- vectorial multiresolution analysis (1)
- vehicular traffic (1)

#### Faculty / Organisational entity

A natural extension of SLD-resolution is introduced as a goal directed proof procedure
for the full first order implicational fragment of intuitionistic logic. Its intuitionistic semantic fits a procedural interpretation of logic programming. By allowing arbitrary nested implications it can be used for implementing modularity in logic programs. With adequate negation axioms it gives an alternative to negation as failure and leads to a proof procedure for full first order predicate logic.

The Monte Carlo complexity of computing integrals depending on a parameter is analyzed for smooth integrands. An optimal algorithm is developed on the basis of a multigrid variance reduction technique. The complexity analysis implies that our algorithm attains a higher convergence rate than any deterministic algorithm. Moreover, because of savings due to computation on multiple grids, this rate is also higher than that of previously developed Monte Carlo algorithms for parametric integration.

The World Wide Web is a medium through which a manufacturer may allow Internet visitors to customize or compose his products. Due to missing or rapidly changing standards these applications are often restricted to relatively simple CGI or JAVA based scripts. Usually, results like images or movies are stored in a database and are transferred on demand to the web-user. Viper (Visualisierung parametrisch editierbarer Raumkomponenten) is a Toolkit [VIP96] written in C++ and JAVA which provides 3D-modeling and visualization methodsfor developing complex web-based applications. The Toolkit has been designed to built a prototype, which can be used to construct and visualize prefabricated homes on the Internet. Alternative applications are outlined in this paper. Within Viper, all objects are stored in a scene graph (VSSG ), which is the basic data structure of the Toolkit. To show the concept and structure of the Toolkit, functionality, and implementation of the prototype are described.

The flow of a liquid into an empty channel is simulated. The simulation is based on a recently published model for general fluid/liquid/solid systems which eliminates the shear stress singularity at the moving contact line between the liquid/fluid interface and the solid. This model is carefully analyzed for low Reynolds and Capillary numbers, adapted to the channel inflow problem, and implemented. Very convincing numerical results are presented.

Abstract: Random Matrix Theory (RMT) is a powerful statistical tool to model spectral fluctuations. This approach has also found fruitful application in Quantum Chromodynamics (QCD). Importantly, RMT provides very efficient means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator for staggered fermions from SU(2) lattice gauge theory for different lattice size and gauge couplings. We focus on the bulk of the spectrum. In disordered systems, the Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is discussed. Moreover, we work out higher order correlators as well, in particular three-point correlation functions.

Abstract: We investigate the quantum properties of fields generated by resonantly enhanced wave mixing based on atomic coherence in Raman systems. We show that such a process can be used for generation of pairs of Stokes and anti-Stokes fields with nearly perfect quantum correlations, yielding almost complete (i.e. 100%) squeezing without the use of a cavity. We discuss the extension of the wave mixing interactions into the domain of a few interacting light quanta.

Abstract: Resonant optical pumping in dense atomic media is discussed, where the absorption length is less than the smallest characteristic dimension of the sample. It is shown that reabsorption and multiple scattering of spontaneous photons (radiation trapping) can substantially slow down the rate of optical pumping. A very slow relaxation out of the target state of the pump process is then sufficient to make optical pumping impossible. As model systems an inhomogeneously and a radiatively broadened 3-level system resonantly driven with a strong broad-band pump field are considered.

Abstract: We show that the physical mechanism of population transfer in a 3-level system with a closed loop of coherent couplings (loop-STIRAP) is not equivalent to an adiabatic rotation of the dark-state of the Hamiltonian but coresponds to a rotation of a higher-order trapping state in a generalized adiabatic basis. The concept of generalized adiabatic basis sets is used as a constructive toolto design pulse sequences for stimulated Raman adiabatic passage (STIRAP) which give maximum population transfer also under conditions when the usual condition of adiabaticty is only poorly fulfilled. Under certain conditions for the pulses (generalized matched pulses) there exists a higher-order trapping state, which is an exact constant of motion and analytic solutions for the atomic dynamics can be derived.

Abstract: We analyze the long-time quantum dynamics of degenerate parametric down-conversion from an initial sub-harmonic vacuum (spontaenous down-conversion). Standard linearization of the Heisenberg equations of motions fails in this case, since it is based on an expansion around an unstable classical solution and neglects pump depletion. Introducing a mean-field approximation we find a periodic exchange of energy between the pump and subharmonic mode goverened by an anharmonic pendulum equation. From this equation the optimum interaction time or crystal length for maximum conversion can be determined. A numerical integration of the 2-mode Schrödinger equation using a dynamically optimized basis of displaced and squeezed number states verifies the characteristic times predicted by the mean-field approximation. In contrast to semiclassical and mean-field predictions it is found that quantum uctuations of the pump mode lead to a substantial limitation of the efficiency of parametric down-conversion.

Abstract: Generalized single-atom Maxwell-Bloch equations for optically dense media are derived taking into account non-cooperative radiative atom-atom interactions. Applying a Gaussian approximation and formally eliminating the degrees of freedom of the quantized radiation field and of all but a probe atom leads to an effective time-evolution operator for the probe atom. The mean coherent amplitude of the local field seen by the atom is shown to be given by the classical Lorentz-Lorenz relation. The second-order correlations of the field lead to terms that describe relaxation or pump processes and level shifts due to multiple scattering or reabsorption of spontaneously emitted photons. In the Markov limit a non-linear and nonlocal single-atom density matrix equation is derived. To illustrate the effects of the quantum corrections we discuss amplified spontaneous emission and radiation trapping in a dense ensemble of initially inverted two-level atoms and the effects of radiative interactions on intrinsic optical bistability in coherently driven systems.

Abstract: We predict the possibility of sharp, high-contrast resonances in the optical response of a broad class of systems, wherein interference effects are generated by coherent perturbation or interaction of dark states. The properties of these resonances can be manipulated to design a desired atomic response.

Thermal Properties of Interacting Bose Fields and Imaginary-Time Stochastic Differential Equations
(1998)

Abstract: Matsubara Green's functions for interacting bosons are expressed as classical statistical averages corresponding to a linear imaginary-time stochastic differential equation. This makes direct numerical simulations applicable to the study of equilibrium quantum properties of bosons in the non-perturbative regime. To verify our results we discuss an oscillator with quartic anharmonicity as a prototype model for an interacting Bose gas. An analytic expression for the characteristic function in a thermal state is derived and a Higgs-type phase transition discussed, which occurs when the oscillator frequency becomes negative.

Abstract: The effect of intracavity Electromagnetically Induced Transparency on the properties of optical resonators and active laser devices is discussed theoretically. A pronounced frequency pulling and cavity linewidth narrowing are predicted. The effect can be used to substantially reduce classical and quantum phase noise of the beat-note of optical oscillators. Fundamental limits of this stabilization mechanism are discussed as well as its potential application to high-resolution spectroscopy.

Abstract: We develop a constructive method to derive exactly solvable quantum mechanical models of rational (Calogero) and trigonometric (Sutherland) type. This method starts from a linear algebra problem: finding eigenvectors of triangular finite matrices. These eigenvectors are transcribed into eigenfunctions of a selfadjoint Schrödinger operator. We prove the feasibility of our method by constructing an " AG_3 model" of trigonometric type (the rational case was known before from Wolfes 1975). Applying a Coxeter group analysis we prove its equivalence with the B_3 model. In order to better understand features of our construction we exhibit the F_4 rational model with our method.

Superselection rules induced by the interaction with the environment are investigated with the help of exactly soluble Hamiltonian models. Starting from the examples of Araki and of Zurek more general models with scattering are presented for which the projection operators onto the induced superselection sectors do no longer commute with the Hamiltonian. The example of an environment given by a free quantum field indicates that infrared divergence plays an essential role for the emergence of induced superselection sectors. For all models the induced superselection sectors are uniquely determined by the Hamiltonian, whereas the time scale of the decoherence depends crucially on the initial state of the total system.

The Wannier-Bloch resonance states are metastable states of a quantum particle in a space-periodic potential plus a homogeneous field. Here we analyze the states of quantum particle in space- and time-periodic potential. In this case the dynamics of the classical counterpart of the quantum system is either quasiregular or chaotic depending on the driving frequency. It is shown that both the quasiregular and the chaotic motion can also support quantum resonances. The relevance of the obtained result to the problem a of crystal electron under simultaneous influence of d.c. and a.c. electric fields is briefly discussed. PACS: 73.20Dx, 73.40Gk, 05.45.+b

We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities have universal character predicted by the random matrix theory of chaotic scattering.

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to nancial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situation and that consistency results known for nonparametric errors- in-variables models carry over to the situation considered herein.