### Refine

#### Document Type

- Doctoral Thesis (3)
- Preprint (1)

#### Keywords

- NURBS (4) (remove)

#### Faculty / Organisational entity

- Fachbereich Mathematik (4) (remove)

We develop a framework for shape optimization problems under state equation con-
straints where both state and control are discretized by B-splines or NURBS. In other
words, we use isogeometric analysis (IGA) for solving the partial differential equation and a nodal approach to change domains where control points take the place of nodes and where thus a quite general class of functions for representing optimal shapes and their boundaries becomes available. The minimization problem is solved by a gradient descent method where the shape gradient will be defined in isogeometric terms. This
gradient is obtained following two schemes, optimize first–discretize then and, reversely,
discretize first–optimize then. We show that for isogeometric analysis, the two schemes yield the same discrete system. Moreover, we also formulate shape optimization with respect to NURBS in the optimize first ansatz which amounts to finding optimal control points and weights simultaneously. Numerical tests illustrate the theory.

In this thesis, we present the basic concepts of isogeometric analysis (IGA) and we consider Poisson's equation as model problem. Since in IGA the physical domain is parametrized via a geometry function that goes from a parameter domain, e.g. the unit square or unit cube, to the physical one, we present a class of parametrizations that can be viewed as a generalization of polar coordinates, known as the scaled boundary parametrizations (SB-parametrizations). These are easy to construct and are particularly attractive when only the boundary of a domain is available. We then present an IGA approach based on these parametrizations, that we call scaled boundary isogeometric analysis (SB-IGA). The SB-IGA derives the weak form of partial differential equations in a different way from the standard IGA. For the discretization projection
on a finite-dimensional space, we choose in both cases Galerkin's method. Thanks to this technique, we state an equivalence theorem for linear elliptic boundary value problems between the standard IGA, when it makes use of an SB-parametrization,
and the SB-IGA. We solve Poisson's equation with Dirichlet boundary conditions on different geometries and with different SB-parametrizations.

In this thesis we develop a shape optimization framework for isogeometric analysis in the optimize first–discretize then setting. For the discretization we use
isogeometric analysis (iga) to solve the state equation, and search optimal designs in a space of admissible b-spline or nurbs combinations. Thus a quite
general class of functions for representing optimal shapes is available. For the
gradient-descent method, the shape derivatives indicate both stopping criteria and search directions and are determined isogeometrically. The numerical treatment requires solvers for partial differential equations and optimization methods, which introduces numerical errors. The tight connection between iga and geometry representation offers new ways of refining the geometry and analysis discretization by the same means. Therefore, our main concern is to develop the optimize first framework for isogeometric shape optimization as ground work for both implementation and an error analysis. Numerical examples show that this ansatz is practical and case studies indicate that it allows local refinement.

This thesis introduces a novel deformation method for computational meshes. It is based on the numerical path following for the equations of nonlinear elasticity. By employing a logarithmic variation of the neo-Hookean hyperelastic material law, the method guarantees that the mesh elements do not become inverted and remain well-shaped. In order to demonstrate the performance of the method, this thesis addresses two areas of active research in isogeometric analysis: volumetric domain parametrization and fluid-structure interaction. The former concerns itself with the construction of a parametrization for a given computational domain provided only a parametrization of the domain’s boundary. The proposed mesh deformation method gives rise to a novel solution approach to this problem. Within it, the domain parametrization is constructed as a deformed configuration of a simplified domain. In order to obtain the simplified domain, the boundary of the target domain is projected in the \(L^2\)-sense onto a coarse NURBS basis. Then, the Coons patch is applied to parametrize the simplified domain. As a range of 2D and 3D examples demonstrates, the mesh deformation approach is able to produce high-quality parametrizations for complex domains where many state-of-the-art methods either fail or become unstable and inefficient. In the context of fluid-structure interaction, the proposed mesh deformation method is applied to robustly update the computational mesh in situations when the fluid domain undergoes large deformations. In comparison to the state-of-the-art mesh update methods, it is able to handle larger deformations and does not result in an eventual reduction of mesh quality. The performance of the method is demonstrated on a classic 2D fluid-structure interaction benchmark reproduced by using an isogeometric partitioned solver with strong coupling.