### Refine

#### Year of publication

- 1999 (51) (remove)

#### Document Type

- Preprint (51) (remove)

#### Keywords

- Brillouin light scattering spectroscopy (2)
- spin wave quantization (2)
- Brillouin light scattering (1)
- Damon-Eshbach spin wave modes (1)
- Elastic properties (1)
- High frequency switching (1)
- Spindynamik (1)
- Stoner-like magnetic particles (1)
- anisotropic coupling between magnetic i (1)
- arrays of magnetic dots and wires (1)

#### Faculty / Organisational entity

- Fachbereich Physik (51) (remove)

Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.

Absract: We report on measurements of the two-dimensional intensity distribtion of linear and non-linear spin wave excitations in a LuBiFeO film. The spin wave intensity was detected with a high-resolution Brillouinlight scatteringspectroscopy setup. The observed snake-like structure of the spin wave intensity distribution is understood as a mode beating between modes with different lateral spin wave intensity distributions. The theoretical treatment of the linear regime is performed analytically, whereas the propagation of non-linear spin waves is simulated by a numerical solution of a non-linear Schrödinger equation with suitable boundary conditions.

In this paper we present a renormalizability proof for spontaneously broken SU (2) gauge theory. It is based on Flow Equations, i.e. on the Wilson renormalization group adapted to perturbation theory. The power counting part of the proof, which is conceptually and technically simple, follows the same lines as that for any other renormalizable theory. The main difficulty stems from the fact that the regularization violates gauge invariance. We prove that there exists a class of renormalization conditions such that the renormalized Green functions satisfy the Slavnov-Taylor identities of SU (2) Yang-Mills theory on which the gauge invariance of the renormalized theory is based.

Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix.

We report on the observation of spin wave quantization in square arrays of micron size circular magnetic Ni80Fe20 dots by means of Brillouin light scattering spectroscopy. For a large wavevector interval several discrete, dispersionless modes with a frequency splitting of up to 2.5 GHz were observed. The modes are identified as magnetostatic surface spin waves laterally quantized due to in- plane confinement in each single dot. The frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

It is shown, that recently constructed PST Lagrangians for chiral supergravities follow directly from earlier Kavalov-Mkrtchyan Lagrangians by an Ansatz for the ' tensor by expressing this in terms of the PST scalar. The susy algebra which included earlier ff-symmetry in the commutator of supersymmetry transformations, is now shown to include both PST symmetries, which arise from the single ff-symmetry term. The Lagrangian for the 5-brane is not described by this correspondence, and probably can be obtained from more general Lagrangians, posessing ff-symmetry.

We report results of the switching properties of Stoner-like magnetic particles subject to short magnetic field pulses, obtained by numerical investigations. We discuss the switching properties as a function of the external field pulse strength and direction, the pulse length and the pulse shape. For field pulses long compared to the ferromagnetic resonance precession time the switching behavior is governed by the magnetic damping term, whereas in the limit of short field pulses the switching properties are dominated by the details of the precession of the magnetic moment. In the latter case, by choosing the right field pulse parameters, the magnetic damping term is of minor importance and ultrafast switching can be achieved. Switching can be obtained in an enlarged angular range of the direction of the applied field compared to the case of long pulses.

An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 islands (dots and wires) by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated spin wave modes laterally quantized in a single island with quantized wavevector values determined by the size of the island are studied. In the case of wires the frequencies of the modes and the transferred wavevector interval, where each mode is observed, are calculated. The results of the calculations are in a good agreement with the experimental data. In the case of circular dots the frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

An overview of the current status of the study of spin wave excitations in arrays of magnetic dots and wires is given. We describe both the status of theory and recent inelastic light scattering experiments addressing the three most important issues: the modification of magnetic properties by patterning due to shape aniso-tropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-plane confinement of spin waves in islands.

An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 wires by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin wave modes laterally quantized in a single wire with quantized wavevector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wavevector interval, where each mode is observed, is calculated using a light scattering theory for confined geometries. The frequen-cies of the modes are calculated, taking into account finite size effects. The results of the calculations are in a good agreement with the experimental data.

Collisions of Spin Wave Envelope Solitons and Self-Focused Spin Wave Packets in Magnetic Films
(1999)

Head-on collisions between two-dimensional self-focused spin wave packets and between quasi-one-dimensional spin wave envelope solitons have been directly observed for the first time in yttrium-iron garnet (YIG) films by means of a space- and time-resolved Brillouin light scattering technique. We show that quasi-one-dimensional envelope solitons formed in narrow film strips ("waveguides") retain their shapes after collision, while the two-dimensional self-focused spin wave packets formed in wide YIG films are destroyed in collision.

High frequency switching of single domain, uniaxial magnetic particles is discussed in terms of transition rates controlled by a small transverse bias field. It is shown that fast switching times can be achieved using bias fields an order of magnitude smaller than the effective anisotropy field. Analytical expressions for the switching time are derived in special cases and general configurations of practical interest are examined using numerical simulations.

We present detailed studies of the enhanced coercivity of exchange-bias bilayer Fe/MnPd, both experimentally and theoretically. We have demonstrated that the existence of large higher-order anisotropies due to exchange coupling between different Fe and MnPd layers can account for the large increase of coercivity in Fe/MnPd system. The linear dependence of coercivity on inverse Fe thickness are well explained by a phenomenological model by introducing higher-order anisotropy terms into the total free energy of the system.

The Hamiltonian of the \(N\)-particle Calogero model can be expressed in terms of generators of a Lie algebra for a definite class of representations. Maintaining this Lie algebra, its representations, and the flatness of the Riemannian metric belonging to the second order differential operator, the set of all possible quadratic Lie algebra forms is investigated. For \(N = 3\) and \(N = 4\) such forms are constructed explicitly and shown to correspond to exactly solvable Sutherland models. The results can be carried over easily to all \(N\).

Abstract: We aim to establish a link between path-integral formulations of quantum and classical field theories via diagram expansions. This link should result in an independent constructive characterisation of the measure in Feynman path integrals in terms of a stochastic differential equation (SDE) and also in the possibility of applying methods of quantum field theory to classical stochastic problems. As a first step we derive in the present paper a formal solution to an arbitrary c-number SDE in a form which coincides with that of Wick's theorem for interacting bosonic quantum fields. We show that the choice of stochastic calculus in the SDE may be regarded as a result of regularisation, which in turn removes ultraviolet divergences from the corresponding diagram series.

We show that the solution to an arbitrary c-number stochastic differential equation (SDE) can be represented as a diagram series. Both the diagram rules and the properties of the graphical elements reflect causality properties of the SDE and this series is therefore called a causal diagram series. We also discuss the converse problem, i.e. how to construct an SDE of which a formal solution is a given causal diagram series. This then allows for a nonperturbative summation of the diagram series by solving this SDE, numerically or analytically.

Abstract: We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.

Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

A new advanced space- and time-resolved Brillouin light scattering (BLS) technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The new technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Linear effects, such as the unidirectional exci-tation of magnetostatic surface waves and the propagation of backward volume magnetostatic waves (BVMSW) in two preferential directions due to the non-collinearity of their phase and group velocities are investigated in detail. In the nonlinear regime stationary and non-stationary self-focusing effects are studied. It is shown, that non-linear diffraction of a stationary BVMSW beam, having a finite transverse aperture, leads to self-focusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet). Numerical modeling of the diffraction process by using a variational approach and direct numerical integration of the two-dimensional non-linear Schrödinger equation provides a good qualitative description of the observed phenomena.