### Refine

#### Year of publication

#### Document Type

- Preprint (159) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Physik (159) (remove)

Abstract: The behavior of the divergent part of the bulk AdS/CFT effective action is considered with respect to the special finite diffeomorphism transformations acting on the boundary as a Weyl transformation of the boundary metric. The resulting 1-cocycle of the Weyl group is in full agreement with the 1-cocycle of the Weyl group obtained from the cohomological consideration of the effective action of the corresponding CFT.

Abstract: Operator product expansions are applied to dilaton-axion four-point functions. In the expansions of the bilocal fields "doubble Phi", CC and "Phi"C, the conformal fields which are symmetric traceless tensors of rank l and have dimensions "delta" = 2+l or 8+l+ "eta"(l) and "eta"(l) = O(N ^ -2) are identified. The unidentified field have dimension "delta" = "lambda"+l+eta(l) with "lambda" >= 10. The anomalous dimensions eta(l) are calculated at order O(N ^ -2) for both 2 ^ -1/2(-"doubble Phi" + CC) and 2 ^ -1/2(-"Phi"C + C"Phi") and are found to be the same, proving U(1)_Y symmetry. The relevant coupling constants are given at order O(1).

Abstract: In the context of AdS/CFT correspondence the two Wilson loop correlator is examined at both zero and finite temperatures. On the basis of an entirely analytical approach we have found for Nambu-Goto strings the functional relation dSc(Reg) /dL = 2*pi*k between Euclidean action Sc and loop separation L with integration constant k, which corresponds to the analogous formula for point-particles. The physical implications of this relation are explored in particular for the Gross-Ooguri phase transition at finite temperature.

Wannier-Stark states for semiconductor superlattices in strong static fields, where the interband Landau-Zener tunneling cannot be neglected, are rigorously calculated. The lifetime of these metastable states was found to show multiscale oscillations as a function of the static field, which is explained by an interaction with above-barrier resonances. An equation, expressing the absorption spectrum of semiconductor superlattices in terms of the resonance Wannier-Stark states is obtained and used to calculate the absorption spectrum in the region of high static fields.

Abstract: We describe quantum-field-theoretical (QFT) techniques for mapping quantum problems onto c-number stochastic problems. This approach yields results which are identical to phase-space techniques [C.W. Gardiner, Quantum Noise (1991)] when the latter result in a Fokker-Planck equation for a corresponding pseudo-probability distribution. If phase-space techniques do not result in a Fokker-Planck equation and hence fail to produce a stochastic representation, the QFT techniques nevertheless yield stochastic di erence equations in discretised time.

In this work, we discuss the resonance states of a quantum particle in a periodic potential plus static force. Originally this problem was formulated for a crystalline electron subject to the static electric field and is known nowadays as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and, in this sense, solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems like optical or semiconductor superlattices.

We present a complete derivation of the semiclassical limit of the coherent state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial value representation for the semiclassical propagator, based on an initial gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed gaussian approximation. It is very different from the Herman - Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.

Phase velocities of surface acoustic waves in several boron nitride films were investigated by Brillouin light scattering. In the case of films with predominantly hexagonal crystal structure, grown under conditions close to the nucleation threshold of cubic BN, four independent elastic constants have been determined from the dispersion of the Rayleigh and the first Sezawa mode. The large elastic anisotropy of up to c11/c33 = 0.1 is attributed to a pronounced texture with the c-axes of the crystallites parallel to the film plane. In the case of cubic BN films the dispersion of the Rayleigh wave provides evidence for the existence of a more compliant layer at the substrate-film interface. The observed broadening of the Rayleigh mode is identified to be caused by the film morphology.

FeNi/FeMn exchange bias samples with a large exchange bias field at room temperature have been prepared on a Cu buffer layer. Upon irradiation with He ions, both the exchange bias field and the coercive field are modified. For low ion doses the exchange bias field is enhanced by nearly a factor of 2. Above a threshold dose of 0.3olsi 10 15 ions/cm 2 , the exchange bias field decreases continuously as the ion dose increases. The ob-served modifications are explained in terms of defect creation acting as pinning sites for domain walls and atomic intermixing.

For the next generation of high data rate magnetic recording above 1 Gbit/s, a better understanding of the switching processes for both recording heads and media will be required. In order to maximize the switch-ing speed for such devices, the magnetization precession after the magnetic field pulse termination needs to be suppressed to a maximum degree. It is demonstrated experimentally for ferrite films that the appropriate adjustment of the field pulse parameters and/or the static applied field may lead to a full suppression of the magnetization precession immediately upon termination of the field pulse. The suppression is explained by taking into account the actual direction of the magnetization with respect to the static field direction at the pulse termination.

Introduction: Recent developments in quantum communication and computing [1-3] stimulated an intensive search for physical systems that can be used for coherent processing of quantum information. It is generally believed that quantum entanglement of distinguishable quantum bits (qubits) is at the heart of quantum information processing. Significant efforts have been directed towards the design of elementary logic gates, which perform certain unitary processes on pairs of qubits. These gates must be capable of generating specific, in general entangled, superpositions of the two qubits and thus require a strong qubit-qubit interaction. Using a sequence of single and two-bit operations, an arbitrary quantum computation can be performed [2]. Over the past few years many systems have been identified for potential implementations of logic gates and several interesting experiments have been performed. Proposals for strong qubit-qubit interaction involve e.g. the vibrational coupling of cooled trapped ions [4], near dipole-dipole or spin-spin interactions such as in nuclear magnetic resonance [5], collisional interactions of confined cooled atoms [6] or radiative interactions between atoms in cavity QED [7]. The possibility of simple preparation and measurement of qubit states as well as their relative insensitivity to a thermal environment makes the latter schemes particularly interesting for quantum information processing. Most theoretical proposals on cavity-QED systems focus on fundamental systems involving a small number of atoms and few photons. These systems are sufficiently simple to allow for a first-principle description. Their experimental implementation is however quite challenging. For example, extremely high-Q micro-cavities are needed to preserve coherence during all atom-photon interactions. Furthermore, single atoms have to be confined inside the cavities for a sufficiently long time. This requires developments of novel cooling and trapping techniques, which is in itself a fascinating direction of current research. Despite these technical obstacles, a remarkable progress has been made in this area: quantum processors consisting of several coupled qubits now appear to be feasible.

We present a detailed analysis of a scalar conformal four-point function obtained from AdS/CFT correspondence. We study the scalar exchange graphs in AdS and discuss their analytic properties. Using methods of conformal partial wave analysis, we present a general procedure to study conformal four-point functions in terms of exchanges of scalar and tensor fields. The logarithmic terms in the four-point functions are connected to the anomalous dimensions of the exchanged fields. Comparison of the results from AdS graphs with the conformal partial wave analysis, suggests a possible general form for the operator product expansion of scalar fields in the boundary CFT.

We discuss the analytic properties of AdS scalar exchange graphs in the crossed channel. We show that the possible non-analytic terms drop out by virtue of non-trivial properties of generalized hypergeometric functions. The absence of non-analytic terms is a necessary condition for the existence of an operator product expansion for CFT amplitudes obtained from AdS/CFT correspondence.

Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
(2000)

Both theoretical and experimental results for the dynamics of photoexcited electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and Ni are presented. A model for the dynamics of excited electrons is developed, which is based on the Boltzmann equation and includes effects of photoexcitation, electron-electron scattering, secondary electrons (cascade and Auger electrons), and transport of excited carriers out of the detection region. From this we determine the time-resolved two-photon photoemission (TR-2PPE). Thus a direct comparison of calculated relaxation times with experimental results by means of TR-2PPE becomes possible. The comparison indicates that the magnitudes of the spin-averaged relaxation time t and of the ratio t_up/t_down of majority and minority relaxation times for the different ferromagnetic transition metals result not only from density-of-states effects, but also from different Coulomb matrix elements M. Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.

An extremely simple and convenient method is presented for computing eigenvalues in quantum mechanics by representing position and momentum operators in a simple matrix form. The simplicity and success of the method is illustrated by numerical results concerning eigenvalues of bound systems and resonances for hermitian and non-hermitian Hamiltonians as well as driven quantum systems.

Abstract: The calculation of absorption cross sections for minimal scalars in supergravity backgrounds is an important aspect of the investigation of AdS/CFT correspondence and requires a matching of appropriate wave functions. The low energy case has attracted particular attention. In the following the dependence of the cross section on the matching point is investigated. It is shown that the low energy limit is independent of the matching point and hence exhibits universality. In the high energy limit the independence is not maintained, but the result is believed to possess the correct energy dependence.

Abstract: Let H_1 , H_2 be complex Hilbert spaces, H be their Hilbert tensor product and let tr_2 be the operator of taking the partial trace of trace class operators in H with respect to the space H_2 . The operation tr_2 maps states in H (i.e. positive trace class operators in H with trace equal to one) into states in H_1 . In this paper we give the full description of mappings that are linear right inverse to tr_2 . More precisely, we prove that any affine mapping F(W) of the convex set of states in H_1 into the states in H that is right inverse to tr_2 is given by W -> W x D for some state D in H_2 . In addition we investigate a representation of the quantum mechanical state space by probability measures on the set of pure states and a representation - used in the theory of stochastic Schrödinger equations - by probability measures on the Hilbert space. We prove that there are no affine mappings from the state space of quantum mechanics into these spaces of probability measures.

Abstract: We analyse 4-dimensional massive "phi" ^ 4 theory at finite temperature T in the imaginary-time formalism. We present a rigorous proof that this quantum field theory is renormalizable, to all orders of the loop expansion. Our main point is to show that the counterterms can be chosen temperature independent, so that the temperature flow of the relevant parameters as a function of T can be followed. Our result confirms the experience from explicit calculations to the leading orders. The proof is based on flow equations, i.e. on the (perturbative) Wilson renormalization group. In fact we will show that the difference between the theories at T > 0 and at T = 0 contains no relevant terms. Contrary to BPHZ type formalisms our approach permits to lay hand on renormalization conditions and counterterms at the same time, since both appear as boundary terms of the renormalization group flow. This is crucial for the proof.