### Refine

#### Year of publication

#### Document Type

- Preprint (159) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Physik (159) (remove)

The Lagrangian field-antifield formalism of Batalin and Vilkovisky (BV) is used to investigate the application of the collec- tive coordinate method to soliton quantisation. In field theories with soliton solutions, the Gaussian fluctuation operator has zero modes due to the breakdown of global symmetries of the Lagrangian in the soliton solutions. It is shown how Noether identities and local symmetries of the Lagrangian arise when collective coordinates are introduced in order to avoid divergences related to these zero modes. This transformation to collective and fluctuation degrees of freedom is interpreted as a canonical transformation in the symplectic field-antifield space which induces a time-local gauge symmetry. Separating the corresponding Lagrangian path integral of the BV scheme in lowest order into harmonic quantum fluctuations and a free motion of the collective coordinate with the classical mass of the soliton, we show how the BV approach clarifies the relation between zero modes, collective coordinates, gauge invariance and the center- of-mass motion of classical solutions in quantum fields. Finally, we apply the procedure to the reduced nonlinear O(3) oe-model.^L

Abstract: We calculate exact analytical expressions for O(alpha s) 3-jet and O (alpha^2 s ) 4-jet cross sections in polarized deep inelastic lepton nucleon scattering. Introducing an invariant jet definition scheme, we present differential distributions of 3- and 4-jet cross sections in the basic kinematical variables x and W^2 as well as total jet cross sections and show their dependence on the chosen spin-dependent (polarized) parton distributions. Noticebly differences in the predictions are found for the two extreme choices, i.e. a large negative sea-quark density or a large positive gluon density. Therefore, it may be possible to discriminate between different parametrizations of polarized parton densities, and hence between the different physical pictures of the proton spin underlying these parametrizations.

A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein con- densates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.

Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

Phase velocities of surface acoustic waves in several boron nitride films were investigated by Brillouin light scattering. In the case of films with predominantly hexagonal crystal structure, grown under conditions close to the nucleation threshold of cubic BN, four independent elastic constants have been determined from the dispersion of the Rayleigh and the first Sezawa mode. The large elastic anisotropy of up to c11/c33 = 0.1 is attributed to a pronounced texture with the c-axes of the crystallites parallel to the film plane. In the case of cubic BN films the dispersion of the Rayleigh wave provides evidence for the existence of a more compliant layer at the substrate-film interface. The observed broadening of the Rayleigh mode is identified to be caused by the film morphology.

Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix.

The magnetic anisotropy of Co/Cu~001! films has been investigated by the magneto-optical Kerr effect, both in the pseudomorphic growth regime and above the critical thickness where strain relaxation sets in. A clear correlation between the onset of strain relaxation as measured by means of reflection high-energy electron diffraction and changes of the magnetic anisotropy has been found.

We present results of anisotropy and exchange-coupling studies of asymmetric Co/Cr/Fe trilayers and superlattices grown by molecular beam epitaxy on Cr~001!/Mg~001! buffers and substrates. The magnetic properties have been investigated using both the longitudinal magneto-optical Kerr effect and ferromagnetic resonance. The hysteresis data obtained from the trilayer system were fit to a theoretical model which contains both bilinear and biquadratic coupling. The effective in-plane anisotropy was found to be of fourfold symmetry with the same easy-axis orientation for both the Fe and Co layers. An analysis of the easy-axis hysteresis loops indicates long-period oscillatory coupling and also suggests a short periodic coupling. We show that weakly antiferromagnetically coupled asymmetric films might serve as potential candidates for improved spin-valve systems.

We present detailed studies of the enhanced coercivity of exchange-bias bilayer Fe/MnPd, both experimentally and theoretically. We have demonstrated that the existence of large higher-order anisotropies due to exchange coupling between different Fe and MnPd layers can account for the large increase of coercivity in Fe/MnPd system. The linear dependence of coercivity on inverse Fe thickness are well explained by a phenomenological model by introducing higher-order anisotropy terms into the total free energy of the system.

High frequency switching of single domain, uniaxial magnetic particles is discussed in terms of transition rates controlled by a small transverse bias field. It is shown that fast switching times can be achieved using bias fields an order of magnitude smaller than the effective anisotropy field. Analytical expressions for the switching time are derived in special cases and general configurations of practical interest are examined using numerical simulations.

A pure Yang-Mills theory extended by addition of a quartic term is considered in order to study the transition from the quantum tunneling regime to that of classical, i.e. thermal, behaviour. The periodic field confiurations are found, which interpolate between the vacuum and sphaleron field configurations. It is shown by explicit calculation that only smooth second order transitions occur for all permissible values of the parameter A introduced with the quartic term. The theory is one of the rare cases which canbe handled analytically.

Abstract: We utilize the generation of large atomic coherence to enhance the resonant nonlinear magneto-optic effect by several orders of magnitude, thereby eliminating power broadening and improving the fundamental signal-to-noise ratio. A proof-of-principle experiment is carried out in a dense vapor of Rb atoms. Detailed numerical calculations are in good agreement with the experimental results. Applications such as optical magnetometry or the search for violations of parity and time reversal symmetry are feasible.

We present a detailed analysis of a scalar conformal four-point function obtained from AdS/CFT correspondence. We study the scalar exchange graphs in AdS and discuss their analytic properties. Using methods of conformal partial wave analysis, we present a general procedure to study conformal four-point functions in terms of exchanges of scalar and tensor fields. The logarithmic terms in the four-point functions are connected to the anomalous dimensions of the exchanged fields. Comparison of the results from AdS graphs with the conformal partial wave analysis, suggests a possible general form for the operator product expansion of scalar fields in the boundary CFT.

We discuss the analytic properties of AdS scalar exchange graphs in the crossed channel. We show that the possible non-analytic terms drop out by virtue of non-trivial properties of generalized hypergeometric functions. The absence of non-analytic terms is a necessary condition for the existence of an operator product expansion for CFT amplitudes obtained from AdS/CFT correspondence.

We report on the exchange bias effect as a function of the in-plane direction of the applied field in two-fold symmetric, epitaxial Ni80Fe20/Fe50Mn50 bilayers grown on Cu(110) single crystal substrates. An enhancement of the exchange bias field, Heb, up to a factor of two is observed if the external field is nearly, but not fully aligned perpendicular to the symmetry direction of the exchange bias field. From the measurement of the ex-change bias field as a function of the in-plane angle of the applied field, the unidirectional, uniaxial and four-fold anisotropy contributions are determined with high precision. The symmetry direction of the unidirec-tional anisotropy switches with increasing NiFe thickness from [110] to [001].