### Refine

#### Year of publication

#### Document Type

- Preprint (28)
- Report (3)
- Doctoral Thesis (1)
- Periodical (1)

#### Language

- English (33) (remove)

#### Has Fulltext

- no (33) (remove)

#### Keywords

- Wavelet (2)
- harmonic density (2)
- wavelets (2)
- Abstract linear systems theory (1)
- Brownian motion (1)
- CHAMP (1)
- CHAMP <Satellitenmission> (1)
- Geomathematik (1)
- Geothermal Flow (1)
- Geothermal Systems (1)

#### Faculty / Organisational entity

Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodifferential equations.

Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.

Algebraic Systems Theory
(2004)

Control systems are usually described by differential equations, but their properties of interest are most naturally expressed in terms of the system trajectories, i.e., the set of all solutions to the equations. This is the central idea behind the so-called "behavioral approach" to systems and control theory. On the other hand, the manipulation of linear systems of differential equations can be formalized using algebra, more precisely, module theory and homological methods ("algebraic analysis"). The relationship between modules and systems is very rich, in fact, it is a categorical duality in many cases of practical interest. This leads to algebraic characterizations of structural systems properties such as autonomy, controllability, and observability. The aim of these lecture notes is to investigate this module-system correspondence. Particular emphasis is put on the application areas of one-dimensional rational systems (linear ODE with rational coefficients), and multi-dimensional constant systems (linear PDE with constant coefficients).

The paper discusses the approximation of scattered data on the sphere which is one of the major tasks in geomathematics. Starting from the discretization of singular integrals on the sphere the authors devise a simple approximation method that employs locally supported spherical polynomials and does not require equidistributed grids. It is the basis for a hierarchical approximation algorithm using differently scaled basis functions, adaptivity and error control. The method is applied to two examples one of which is a digital terrain model of Australia.

For the determination of the earth" s gravity field many types of observations are available nowadays, e.g., terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradiometry etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other hand, is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e., linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth" s surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth" s models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry, and combined satellite-to-satellite tracking and gradiometry.

Annual Report
(1997)

The basic theory of spherical singular integrals is recapitulated. Criteria are given for measuring the space-frequency localization of functions on the sphere. The trade off between space localization on the sphere and frequency localization in terms of spherical harmonics is described in form of an uncertainty principle. A continuous version of spherical multiresolution is introduced, starting from continuous wavelet transform corresponding to spherical wavelets with vanishing moments up to a certain order. The wavelet transform is characterized by least-squares properties. Scale discretization enables us to construct spherical counterparts of wavelet packets and scale discrete Daubechies" wavelets. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to pyramyd algorithms. Fully discretized wavelet transforms are obtained via approximate integration rules on the sphere. Finally applications to (geo-)physical reality are discussed in more detail. A combined method is proposed for approximating the low frequency parts of a physical quantity by spherical harmonics and the high frequency parts by spherical wavelets. The particular significance of this combined concept is motivated for the situation of today" s physical geodesy, viz. the determination of the high frequency parts of the earth" s gravitational potential under explicit knowledge of the lower order part in terms of a spherical harmonic expansion.

The static deformation of the surface of the earth caused by surface pressure like the water load of an ocean or an artificial lake is discussed. First a brief mention is made on the solution of the Boussenesq problem for an infinite halfspace with the elastic medium to be assumed as homogeneous and isotropic. Then the elastic response for realistic earth models is determinied by spline interpolation using Navier splines. Major emphasis is on the derteminination of the elastic field caused by water loads from surface tractions on the (real) earth" s surface. Finally the elastic deflection of an artificial lake assuming a homogeneous isotropic crust is compared for both evaluation methods.

We show that the intersection local times \(\mu_p\) on the intersection of \(p\) independent planar Brownian paths have an average density of order three with respect to the gauge function \(r^2\pi\cdot (log(1/r)/\pi)^p\), more precisely, almost surely, \[ \lim\limits_{\varepsilon\downarrow 0} \frac{1}{log |log\ \varepsilon|} \int_\varepsilon^{1/e} \frac{\mu_p(B(x,r))}{r^2\pi\cdot (log(1/r)/\pi)^p} \frac{dr}{r\ log (1/r)} = 2^p \mbox{ at $\mu_p$-almost every $x$.} \] We also show that the lacunarity distributions of \(\mu_p\), at \(\mu_p\)-almost every point, is given as the distribution of the product of \(p\) independent gamma(2)-distributed random variables. The main tools of the proof are a Palm distribution associated with the intersection local time and an approximation theorem of Le Gall.

A concept of generalized discrepancy, which involves pseudodifferential operators to give a criterion of equidistributed pointsets, is developed on the sphere. A simply structured formula in terms of elementary functions is established for the computation of the generalized discrepancy. With the help of this formula five kinds of point systems on the sphere, namely lattices in polar coordinates, transformed 2-dimensional sequences, rotations on the sphere, triangulation, and sum of three squares sequence, are investigated. Quantitative tests are done, and the results are compared with each other. Our calculations exhibit different orders of convergence of the generalized discrepancy for different types of point systems.

Spline functions that interpolate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A pointwise convergence theorem containing explicit constants yields a useable error bound.

Wavelet transform originated in 1980's for the analysis of seismic signals has seen an explosion of applications in geophysics. However, almost all of the material is based on wavelets over Euclidean spaces. This paper deals with the generalization of the theory and algorithmic aspects of wavelets to a spherical earth's model and geophysically relevant vector fields such as the gravitational, magnetic, elastic field of the earth.A scale discrete wavelet approach is considered on the sphere thereby avoiding any type of tensor-valued 'basis (kernel) function'. The generators of the vector wavelets used for the fast evaluation are assumed to have compact supports. Thus the scale and detail spaces are finite-dimensional. As an important consequence, detail information of the vector field under consideration can be obtained only by a finite number of wavelet coefficients for each scale. Using integration formulas that are exact up to a prescribed polynomial degree, wavelet decomposition and reconstruction are investigated for bandlimited vector fields. A pyramid scheme for the recursive computation of the wavelet coefficients from level to level is described in detail. Finally, data compression is discussed for the EGM96 model of the earth's gravitational field.

Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a continuous problem of harmonic downward continuation. The space-borne gravity gradients are assumed to be known continuously over the satellite (orbit) surface. Our purpose is to specify sufficient conditions under which uniqueness and existence can be guaranteed. It is shown that, in a spherical context, uniqueness results are obtainable by decomposition of the Hesse matrix in terms of tensor spherical harmonics. In particular, the gravitational potential is proved to be uniquely determined if second order radial derivatives are prescribed at satellite height. This information leads us to a reformulation of satellite gradiometry as a (Fredholm) pseudodifferential equation of first kind. Secondly, for a numerical realization, we assume the gravitational gradients to be known for a finite number of discrete points. The discrete problem is dealt with classical regularization methods, based on filtering techniques by means of spherical wavelets. A spherical singular integral-like approach to regularization methods is established, regularization wavelets are developed which allow the regularization in form of a multiresolution analysis. Moreover, a combined spherical harmonic and spherical regularization wavelet solution is derived as an appropriate tool in future (global and local) high-presision resolution of the earth" s gravitational potential.

Glycine constitutes the major neurotransmitter at inhibitory synapses of lower brain regions.
A rapid removal of glycine from the synaptic cleft and consequent recycling is crucial for
synaptic transmission in systems with high effort on temporal precision. This is mainly
achieved by glycine translocation via two glycine transporters (GlyTs), namely GlyT1 and
GlyT2. At inhibitory synapses, GlyT2 was found to be specifically expressed by neurons,
supplying the presynapse with glycine needed for vesicle filling. In contrast, GlyT1 is attributed
to astrocytes and primarily mediates the termination of synaptic transmission by glycine
removal from the synaptic cleft. Employing patch-clamp recordings from principal neurons of
the lateral superior olive (LSO) in acute brainstem slices of GlyT1b/c knockout (KO) mice and
wildtype (WT) littermates at postnatal day 20, I analyzed how postsynaptic responses are
changed in a GlyT1-depleted environment. During spontaneous vesicle release I found no
change of postsynaptic responses, contradicting my initial hypothesis of prolonged decay
times. Electrical stimulation of fibers of the medial nucleus of the trapezoid body (MNTB),
which are known to form fast, reliable and highly precise synapses with LSO principal neurons,
revealed that GlyT1 is involved in proper synaptic function during sustained, high frequent
synaptic transmission. Stimulation with 50 Hz led to a stronger decay time and latency
prolongation in GlyT1b/c KO, accelerating to 60% longer decay times and 30% longer latencies.
Additionally, a more pronounced frequency-dependent depression and fidelity decrease was
observed during stimulation with 200 Hz in GlyT1b/c KO, resulting in 67% smaller amplitudes
and only 25% of WT fidelity at the end of the challenge. Basic properties like readily releasable
pool, release probability, and quantal size (q) were not altered in GlyT1b/c KO, but
interestingly q decreased during 50 Hz and 100 Hz challenges to about 84%, which was not
observed in WT. I conclude that stronger accumulation of extracellular glycine due to GlyT1
loss leads to prolonged activation of postsynaptic glycine receptors (GlyRs). As a further
consequence, activation of presynaptic GlyRs in the vicinity of the synaptic cleft might be
enhanced, accompanied by a stronger occurrence of shunting inhibition. Furthermore, I
assume a GlyT1-dependent glycine shuttle, which is absent at GlyT1b/c KO synapses. This
could result in a diminished glycine supply to GlyT2 located at more distant sites, causing a
disturbed replenishment during periods with excess release of glycine. Conclusively, my study
reveals a contribution of astrocytes in fast and reliable synaptic transmission at the MNTB-LSO
synapse, which in turn is crucial for proper sound source localization.

This report gives an insight into basics of stress field simulations for geothermal reservoirs.
The quasistatic equations of poroelasticity are deduced from constitutive equations, balance
of mass and balance of momentum. Existence and uniqueness of a weak solution is shown.
In order of to find an approximate solution numerically, usage of the so–called method of
fundamental solutions is a promising way. The idea of this method as well as a sketch of
how convergence may be proven are given.

Due to the increasing demand of renewable energy production facilities, modeling geothermal reservoirs is a central issue in today's engineering practice. After over 40 years of study, many models have been proposed and applied to hundreds of sites worldwide. Nevertheless, with increasing computational capabilities new efficient methods are becoming available. The aim of this paper is to present recent progress on seismic processing as well as fluid and thermal flow simulations for porous and fractured subsurface systems. The commonly used methods in industrial energy exploration and production such as forward modeling, seismic migration, and inversion methods together with continuum and discrete flow models for reservoir monitoring and management are reviewed. Furthermore, for two specific features numerical examples are presented. Finally, future fields of studies are described.