### Refine

#### Year of publication

- 1999 (4) (remove)

#### Keywords

- average density (2)
- Brownian motion (1)
- Palm distribution (1)
- Palm distributions (1)
- Rectifiability (1)
- average densities (1)
- density distribution (1)
- geometric measure theory (1)
- intersection local time (1)
- lacunarity distribution (1)

Tangent measure distributions are a natural tool to describe the local geometry of arbitrary measures of any dimension. We show that for every measure on a Euclidean space and every s, at almost every point, all s-dimensional tangent measure distributions define statistically self-similar random measures. Consequently, the local geometry of general measures is not different from the local geometry of self-similar sets. We illustrate the strength of this result by showing how it can be used to improve recently proved relations between ordinary and average densities.

We show that the intersection local times \(\mu_p\) on the intersection of \(p\) independent planar Brownian paths have an average density of order three with respect to the gauge function \(r^2\pi\cdot (log(1/r)/\pi)^p\), more precisely, almost surely, \[ \lim\limits_{\varepsilon\downarrow 0} \frac{1}{log |log\ \varepsilon|} \int_\varepsilon^{1/e} \frac{\mu_p(B(x,r))}{r^2\pi\cdot (log(1/r)/\pi)^p} \frac{dr}{r\ log (1/r)} = 2^p \mbox{ at $\mu_p$-almost every $x$.} \] We also show that the lacunarity distributions of \(\mu_p\), at \(\mu_p\)-almost every point, is given as the distribution of the product of \(p\) independent gamma(2)-distributed random variables. The main tools of the proof are a Palm distribution associated with the intersection local time and an approximation theorem of Le Gall.

A compact subset E of the complex plane is called removable if all bounded analytic functions on its complement are constant or, equivalently, i f its analytic capacity vanishes. The problem of finding a geometric characterization of the removable sets is more than a hundred years old and still not comp letely solved.