### Refine

#### Year of publication

#### Document Type

- Preprint (31) (remove)

#### Has Fulltext

- no (31) (remove)

#### Keywords

- wavelets (2)
- Brownian motion (1)
- CHAMP (1)
- Geothermal Flow (1)
- Geothermal Systems (1)
- Gravitationsfeld (1)
- Mathematische Modellierung (1)
- Mehrskalenanalyse (1)
- Palm distribution (1)
- Panel clustering (1)

Insbesondere bei der industriellen Nutzung tiefer geothermischer Systeme gibt es Risiken, die im Hinblick auf eine zukunftsträchtige Rolle der Ressource "Geothermie" innerhalb der Energiebranche eingeschätzt und minimiert werden müssen. Zur Förderung und Unterstützung dieses Prozesses kann die Mathematik einen entscheidenden Beitrag leisten. Um dies voranzutreiben haben wir zur Charakterisierung tiefer geothermischer Systeme ein Säulenmodell entwickelt, das die Bereiche Exploration, Bau und Produktion näher beleuchtet. Im Speziellen beinhalten die Säulen: Seismische Erkundung, Gravimetrie/Geomagnetik, Transportprozesse, Spannungsfeld.

Due to the increasing demand of renewable energy production facilities, modeling geothermal reservoirs is a central issue in today's engineering practice. After over 40 years of study, many models have been proposed and applied to hundreds of sites worldwide. Nevertheless, with increasing computational capabilities new efficient methods are becoming available. The aim of this paper is to present recent progress on seismic processing as well as fluid and thermal flow simulations for porous and fractured subsurface systems. The commonly used methods in industrial energy exploration and production such as forward modeling, seismic migration, and inversion methods together with continuum and discrete flow models for reservoir monitoring and management are reviewed. Furthermore, for two specific features numerical examples are presented. Finally, future fields of studies are described.

The following three papers present recent developments in multiscale gravitational field modeling by the use of CHAMP or CHAMP-related data. Part A - The Model SWITCH-03: Observed orbit perturbations of the near-Earth orbiting satellite CHAMP are analyzed to recover the long-wavelength features of the Earth's gravitational potential. More precisely, by tracking the low-flying satellite CHAMP by the high-flying satellites of the Global Positioning System (GPS) a kinematic orbit of CHAMP is obtainable from GPS tracking observations, i.e. the ephemeris in cartesian coordinates in an Earth-fixed coordinate frame (WGS84) becomes available. In this study we are concerned with two tasks: First we present new methods for preprocessing, modelling and analyzing the emerging tracking data. Then, in a first step we demonstrate the strength of our approach by applying it to simulated CHAMP orbit data. In a second step we present results obtained by operating on a data set derived from real CHAMP data. The modelling is mainly based on a connection between non-bandlimited spherical splines and least square adjustment techniques to take into account the non-sphericity of the trajectory. Furthermore, harmonic regularization wavelets for solving the underlying Satellite-to-Satellite Tracking (SST) problem are used within the framework of multiscale recovery of the Earth's gravitational potential leading to SWITCH-03 (Spline and Wavelet Inverse Tikhonov regularized CHamp data). Further it is shown how regularization parameters can be adapted adequately to a specific region improving a globally resolved model. Finally we give a comparison of the developed model to the EGM96 model, the model UCPH2002_02_0.5 from the University of Copenhagen and the GFZ models EIGEN-1s and EIGEN-2. Part B - Multiscale Solutions from CHAMP: CHAMP orbits and accelerometer data are used to recover the long- to medium- wavelength features of the Earth's gravitational potential. In this study we are concerned with analyzing preprocessed data in a framework of multiscale recovery of the Earth's gravitational potential, allowing both global and regional solutions. The energy conservation approach has been used to convert orbits and accelerometer data into in-situ potential. Our modelling is spacewise, based on (1) non-bandlimited least square adjustment splines to take into account the true (non-spherical) shape of the trajectory (2) harmonic regularization wavelets for solving the underlying inverse problem of downward continuation. Furthermore we can show that by adapting regularization parameters to specific regions local solutions can improve considerably on global ones. We apply this concept to kinematic CHAMP orbits, and, for test purposes, to dynamic orbits. Finally we compare our recovered model to the EGM96 model, and the GFZ models EIGEN-2 and EIGEN-GRACE01s. Part C - Multiscale Modeling from EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, UCPH2002_0.5, EGM96: Spherical wavelets have been developed by the Geomathematics Group Kaiserslautern for several years and have been successfully applied to georelevant problems. Wavelets can be considered as consecutive band-pass filters and allow local approximations. The wavelet transform can also be applied to spherical harmonic models of the Earth's gravitational field like the most up-to-date EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, UCPH2002_0.5, and the well-known EGM96. Thereby, wavelet coefficients arise and these shall be made available to other interested groups. These wavelet coefficients allow the reconstruction of the wavelet approximations. Different types of wavelets are considered: bandlimited wavelets (here: Shannon and Cubic Polynomial (CP)) as well as non-bandlimited ones (in our case: Abel-Poisson). For these types wavelet coefficients are computed and wavelet variances are given. The data format of the wavelet coefficients is also included.

The inverse problem of recovering the Earth's density distribution from satellite data of the first or second derivative of the gravitational potential at orbit height is discussed. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbit height is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust.

Power-ordered sets are not always lattices. In the case of distributive lattices we give a description by disjoint of chains. Finite power-ordered sets have a polarity. We introduct the leveled lattices and show examples with trivial tolerance. Finally we give a list of Hasse diagrams of power-ordered sets.

Integral equations on the half of line are commonly approximated by the finite-section approximation, in which the infinite upper limit is replaced by apositie number called finite-section parameter. In this paper we consider the finite-section approximation for first kind intgral equations which are typically ill-posed and call for regularization. For some classes of such equations corresponding to inverse problems from optics and astronomy we indicate the finite-section parameters that allows to apply standard regularization techniques. Two discretization schemes for the finite-section equations ar also proposed and their efficiency is studied.

Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.

Spline functions that interpolate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A pointwise convergence theorem containing explicit constants yields a useable error bound.

The static deformation of the surface of the earth caused by surface pressure like the water load of an ocean or an artificial lake is discussed. First a brief mention is made on the solution of the Boussenesq problem for an infinite halfspace with the elastic medium to be assumed as homogeneous and isotropic. Then the elastic response for realistic earth models is determinied by spline interpolation using Navier splines. Major emphasis is on the derteminination of the elastic field caused by water loads from surface tractions on the (real) earth" s surface. Finally the elastic deflection of an artificial lake assuming a homogeneous isotropic crust is compared for both evaluation methods.

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

For the determination of the earth" s gravity field many types of observations are available nowadays, e.g., terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradiometry etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other hand, is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e., linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth" s surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth" s models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry, and combined satellite-to-satellite tracking and gradiometry.

Many problems arising in (geo)physics and technology can be formulated as compact operator equations of the first kind \(A F = G\). Due to the ill-posedness of the equation a variety of regularization methods are in discussion for an approximate solution, where particular emphasize must be put on balancing the data and the approximation error. In doing so one is interested in optimal parameter choice strategies. In this paper our interest lies in an efficient algorithmic realization of a special class of regularization methods. More precisely, we implement regularization methods based on filtered singular value decomposition as a wavelet analysis. This enables us to perform, e.g., Tikhonov-Philips regularization as multiresolution. In other words, we are able to pass over from one regularized solution to another one by adding or subtracting so-called detail information in terms of wavelets. It is shown that regularization wavelets as proposed here are efficiently applicable to a future problem in satellite geodesy, viz. satellite gravity gradiometry.

Metaharmonic wavelets are introduced for constructing the solution of theHelmholtz equation (reduced wave equation) corresponding to Dirichlet's orNeumann's boundary values on a closed surface approach leading to exactreconstruction formulas is considered in more detail. A scale discrete version ofmultiresolution is described for potential functions metaharmonic outside theclosed surface and satisfying the radiation condition at infinity. Moreover, wediscuss fully discrete wavelet representations of band-limited metaharmonicpotentials. Finally, a decomposition and reconstruction (pyramid) scheme foreconomical numerical implementation is presented for Runge-Walsh waveletapproximation.

A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

The paper discusses the approximation of scattered data on the sphere which is one of the major tasks in geomathematics. Starting from the discretization of singular integrals on the sphere the authors devise a simple approximation method that employs locally supported spherical polynomials and does not require equidistributed grids. It is the basis for a hierarchical approximation algorithm using differently scaled basis functions, adaptivity and error control. The method is applied to two examples one of which is a digital terrain model of Australia.