Refine
Year of publication
- 1999 (206) (remove)
Document Type
- Preprint (206) (remove)
Keywords
- Case-Based Reasoning (10)
- Fallbasiertes Schliessen (5)
- case-based problem solving (5)
- Abstraction (4)
- Fallbasiertes Schließen (4)
- Knowledge Acquisition (4)
- Internet (3)
- Knowledge acquisition (3)
- Maschinelles Lernen (3)
- case-based reasoning (3)
Faculty / Organisational entity
- Fachbereich Informatik (206) (remove)
We present an approach to learning cooperative behavior of agents. Our ap-proach is based on classifying situations with the help of the nearest-neighborrule. In this context, learning amounts to evolving a set of good prototypical sit-uations. With each prototypical situation an action is associated that should beexecuted in that situation. A set of prototypical situation/action pairs togetherwith the nearest-neighbor rule represent the behavior of an agent.We demonstrate the utility of our approach in the light of variants of thewell-known pursuit game. To this end, we present a classification of variantsof the pursuit game, and we report on the results of our approach obtained forvariants regarding several aspects of the classification. A first implementationof our approach that utilizes a genetic algorithm to conduct the search for a setof suitable prototypical situation/action pairs was able to handle many differentvariants.
The common wisdom that goal orderings can be used to improve planning performance is nearly as old as planning itself. During the last decades of research several approaches emerged that computed goal orderings for different planning paradigms, mostly in the area of state-space planning. For partial-order, plan-space planners goal orderings have not been investigated in much detail. Mechanisms developed for statespace planning are not directly applicable because partial-order planners do not have a current (world) state. Further, it is not completely clear how plan-space planners should make use of goal orderings. This paper describes an approach to extract goal orderings to be used by the plan-space planner CAPlan. The extraction of goal orderings is based on the analysis of an extended version of operator graphs which previously have been found useful for the analysis of interactions and recursion of plan-space planners.
Im Rahmen des Sonderforschungsbereichs SFB314, Projekt X9 "Lernen und Analogie in technischen Expertensystemen", wurde die Verwendbarkeit von Techniken des fallbasierten Schliessens in wissens- basierten Systemen untersucht. Als prototypische Anwendungsdomäne wurde die Arbeitsplanerstellung rotationssymmetrischer Werkstücke gewählt. Im vorliegenden Beitrag wird ein Modell der Arbeits- planerstellung unter Berücksichtigung der verschiedenen, bisher als unabhängig behandelten Planungsmethoden beschrieben. Auf der Basis einer modelbasierte Wissensakquistion aus in Unternehmen verfügbaren Arbeitsplänen wird ein Ausschnitt der Arbeitsplanerstellung, die Aufspannplanung, detailliert. Die Anwendbarkeit wurde durch eine prototypische Realisierung nachgewiesen.
Freivalds, Karpinski and Smith [8] explored a special type of learning in the limit: identification of an unknown concept (function) by eliminating (erasing) all but one possible hypothesis (this type of learning is called co-learning). The motivation behind learning by erasing lies in the process of human and automated computer learning: often we can discard incorrect solutions much easier than to come up with the correct one. In Gödel numberings any learnable family can be learned by an erasing strategy. In this paper we concentrate on co-learning minimal programs. We show that co-learning of minimal programs, as originally defined is significantly weaker than learning minimal programs in Gödel numberings. In order to enhance the learning power
We present an approach to automating the selection of search-guiding heuris-tics that control the search conducted by a problem solver. The approach centerson representing problems with feature vectors that are vectors of numerical val-ues. Thus, similarity between problems can be determined by using a distancemeasure on feature vectors. Given a database of problems, each problem beingassociated with the heuristic that was used to solve it, heuristics to be employedto solve a novel problem are suggested in correspondence with the similaritybetween the novel problem and problems of the database.Our approach is strongly connected with instance-based learning and nearest-neighbor classification and therefore possesses incremental learning capabilities.In experimental studies it has proven to be a viable tool for achieving the finaland crucial missing piece of automation of problem solving - namely selecting anappropriate search-guiding heuristic - in a flexible way.This work was supported by the Deutsche Forschungsgemeinschaft (DFG).
This report presents the properties of a specification of the domain of process planning for rotary symmetrical workpieces. The specification results from a model for problem solving in this domain that involves different reasoners, one of which is an AI planner that achieves goals corresponding to machining workpieces by considering certain operational restrictions of the domain. When planning with SNLP (McAllester and Rosenblitt, 1991), we will show that the resulting plans have the property of minimizing the use of certain key operations. Further, we will show that, for elastic protected plans (Kambhampati et al., 1996) such as the ones produced by SNLP, the goals corresponding to machining parts of a workpiece are OE-constrained trivial serializable, a special form of trivial serializability (Barrett and Weld, 1994). However, we will show that planning with SNLP in this domain can be very difficult: elastic protected plans for machining parts of a workpiece are nonmergeable. Finally, we will show that, for sufix, prefix or sufix and prefix plans such as the ones produced by state-space planners, it is not possible to have both properties, being OEconstrained trivial serializable and minimizing the use of the key operations, at the same time.
In nebenläufigen Systemen erleichtert das Konzept der Atomarität vonOperationen, konkurrierende Zugriffe in größere, leichter beherrschbareAbschnitte zu unterteilen. Wenn wir aber Spezifikationen in der forma-len Beschreibungstechnik Estelle betrachten, erweist es sich, daß es un-ter bestimmten Umständen schwierig ist, die Atomarität der sogenanntenTransitionen bei Implementationen exakt einzuhalten, obwohl diese Ato-marität eine konzeptuelle Grundlage der Semantik von Estelle ist. Es wirdaufgezeigt, wie trotzdem sowohl korrekte als auch effiziente nebenläufigeImplementationen erreicht werden können. Schließlich wird darauf hinge-wiesen, daß die das Problem auslösenden Aktionen oft vom Spezifiziererleicht von vorneherein vermieden werden können; und dies gilt auch überden Kontext von Estelle hinaus.
Bestimmung der Ähnlichkeit in der fallbasierten Diagnose mit simulationsfähigen Maschinenmodellen
(1999)
Eine Fallbasis mit bereits gelösten Diagnoseproblemen Wissen über die Struktur der Maschine Wissen über die Funktion der einzelnen Bauteile (konkret und abstrakt) Die hier vorgestellte Komponente setzt dabei auf die im Rahmen des Moltke-Projektes entwickelten Systeme Patdex[Wes91] (fallbasierte Diagnose) und iMake [Sch92] bzw. Make [Reh91] (modellbasierte Generierung von Moltke- Wissensbasen) auf.
The feature interaction problem in telecommunications systems increasingly obstructsthe evolution of such systems. We develop formal detection criteria which render anecessary (but less than sufficient) condition for feature interactions. It can be checkedmechanically and points out all potentially critical spots. These have to be analyzedmanually. The resulting resolution decisions are incorporated formally. Some prototypetool support is already available. A prerequisite for formal criteria is a formal definitionof the problem. Since the notions of feature and feature interaction are often used in arather fuzzy way, we attempt a formal definition first and discuss which aspects can beincluded in a formalization (and therefore in a detection method). This paper describeson-going work.
Collecting Experience on the Systematic Development of CBR Applications using the INRECA Methodology
(1999)
This paper presents an overview of the INRECA methodology for building and maintaining CBR applications. This methodology supports the collection and reuse of experience on the systematic development of CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development experience is documented using software process models and stored in different levels of generality in a three-layered experience base. Up to now, experience from 9 industrial projects enacted by all INRECA II partners has been collected.
Automata-Theoretic vs. Property-Oriented Approaches for the Detection of Feature Interactions in IN
(1999)
The feature interaction problem in Intelligent Networks obstructs more and morethe rapid introduction of new features. Detecting such feature interactions turns out to be a big problem. The size of the systems and the sheer computational com-plexity prevents the system developer from checking manually any feature against any other feature. We give an overview on current (verification) approaches and categorize them into property-oriented and automata-theoretic approaches. A comparisonturns out that each approach complements the other in a certain sense. We proposeto apply both approaches together in order to solve the feature interaction problem.
A large set of criteria to evaluate formal methods for reactive systems is presented. To make this set more comprehensible, it is structured according to a Concept-Model of formal methods. It is made clear that it is necessary to make the catalogue more specific before applying it. Some of the steps needed to do so are explained. As an example the catalogue is applied within the context of the application domain building automation systems to three different formal methods: SDL, statecharts, and a temporallogic.
Im Bereich der Expertensysteme ist das Problemlösen auf der Basis von bekannten Fallbeispielen ein derzeit sehr aktuelles Thema. Auch für Diagnoseaufgaben gewinnt der fallbasierte Ansatz immer mehr an Bedeutung. In diesem Papier soll der im Rahmen des Moltke -Projektes1 an der Universität Kaiserslautern entwickelte fallbasierte Problemlöser Patdex/22 vorgestellt werden. Ein erster Prototyp, Patdex/1, wurde bereits 1988 entwickelt.
We present a mathematical knowledge base containing the factual know-ledge of the first of three parts of a textbook on semi-groups and automata,namely "P. Deussen: Halbgruppen und Automaten". Like almost all math-ematical textbooks this textbook is not self-contained, but there are somealgebraic and set-theoretical concepts not being explained. These concepts areadded to the knowledge base. Furthermore there is knowledge about the nat-ural numbers, which is formalized following the first paragraph of "E. Landau:Grundlagen der Analysis".The data base is written in a sorted higher-order logic, a variant of POST ,the working language of the proof development environment OmegaGamma mkrp. We dis-tinguish three different types of knowledge: axioms, definitions, and theorems.Up to now, there are only 2 axioms (natural numbers and cardinality), 149definitions (like that for a semi-group), and 165 theorems. The consistency ofsuch knowledge bases cannot be proved in general, but inconsistencies may beimported only by the axioms. Definitions and theorems should not lead to anyinconsistency since definitions form conservative extensions and theorems areproved to be consequences.
Das System ART (ASF RRL Translation) stellt im wesentlichen eine Umgebung dar,in welcher die Modularisierbarkeit von Beweisen (Induktionsbeweisen über Gleichungs-spezifikationen) untersucht werden kann. Es wurde die bereits bestehende Spezifikati-onsprache ASF (siehe [BeHeKl89]), in welcher modularisierte Spezifikationen möglichsind, so erweitert, daß zusätzlich auch Beweisaufgaben spezifiziert werden können. Imfolgenden wird diese erweiterte Spezifikationsprache auch ASF genannt. Als Bewei-ser für die Beweisaufgaben einer Spezifikation wurde RRL (siehe [KaZh89]) gewählt.RRL kann sowohl Kommandos aus einem File abarbeiten, wie auch Sitzungsprotokolleanfertigen, mit deren Hilfe sich die Beweisverläufe und Benutzereingaben der entspre-chenden RRL-Sitzung rekonstruieren lassen. In ART kann nun eine ASF-Spezifikation,die Beweisaufgaben umfassen kann, in ein File übersetzt werden, welches von RRLabgearbeitet werden kann. Dies wird im folgenden kurz mit 'Übersetzung von ASF nach RRL' bezeichnet. Bei der Abarbeitung eines solchen Files wird von RRL ein Sit-zungsprotokoll angelegt. ART kann dieses Sitzungsprotokoll dazu heranziehen, neueErgebnisse, wie etwa den erfolgreichen Beweis einer Beweisaufgabe, zu ermitteln, umdiese Ergebnisse der ursprüngliche Spezifikation hinzuzufügen. Dies wird im folgendenkurz mit 'Rückübersetzung von RRL nach ASF' bezeichnet. Im Kern besteht ART alsoaus einer Komponente zur Übersetzung von ASF nach RRL und aus einer Komponentezur Rückübersetzung von RRL nach ASF.