### Refine

#### Year of publication

#### Document Type

- Preprint (1035) (remove)

#### Language

- English (1035) (remove)

#### Keywords

- AG-RESY (14)
- Approximation (9)
- Case-Based Reasoning (9)
- RODEO (9)
- Mehrskalenanalyse (8)
- Wavelet (8)
- Boltzmann Equation (7)
- Location Theory (7)
- Numerical Simulation (7)
- Case Based Reasoning (6)

#### Faculty / Organisational entity

We consider the problem to evacuate several regions due to river flooding, where sufficient time is given to plan ahead. To ensure a smooth evacuation procedure, our model includes the decision which regions to assign to which shelter, and when evacuation orders should be issued, such that roads do not become congested.
Due to uncertainty in weather forecast, several possible scenarios are simultaneously considered in a robust optimization framework. To solve the resulting integer program, we apply a Tabu search algorithm based on decomposing the problem into better tractable subproblems. Computational experiments on random instances and an instance based on Kulmbach, Germany, data show considerable improvement compared to an MIP solver provided with a strong starting solution.

We present a convenient notation for positive/negativeADconditional equations. Theidea is to merge rules specifying the same function by using caseAD, ifAD, matchAD, and letADexpressions.Based on the presented macroADruleADconstruct, positive/negativeADconditional equational specifiADcations can be written on a higher level. A rewrite system translates the macroADruleADconstructsinto positive/negativeADconditional equations.

The Internet has fallen prey to its most successful service, the World-Wide Web. The networksdo not keep up with the demands incurred by the huge amount of Web surfers. Thus, it takeslonger and longer to obtain the information one wants to access via the World-Wide Web.Many solutions to the problem of network congestion have been developed in distributed sys-tems research in general and distributed file and database systems in particular. The introduc-tion of caching and replication strategies has proven to help in many situations and thereforethese techniques are also applied to the WWW. Although most problems and associated solu-tions are known, some circumstances are different with the Web, forcing the adaptation ofknown strategies. This paper gives an overview about these differences and about currentlydeployed, developed, and evaluated solutions.

We have developed a middleware framework for workgroup environments that can support distributed software development and a variety of other application domains requiring document management and change management for distributed projects. The framework enables hypermedia-based integration of arbitrary legacy and new information resources available via a range of protocols, not necessarily known in advance to us as the general framework developers nor even to the environment instance designers. The repositories in which such information resides may be dispersed across the Internet and/or an organizational intranet. The framework also permits a range of client models for user and tool interaction, and applies an extensible suite of collaboration services, including but not limited to multi-participant workflow and coordination, to their information retrievals and updates. That is, the framework is interposed between clients, services and repositories - thus "middleware". We explain how our framework makes it easy to realize a comprehensive collection of workgroup and workflow features we culled from a requirements survey conducted by NASA.

Abstract: Winding number transitions from quantum to classical behavior are studied in the case of the 1+1 dimensional Mottola-Wipf model with the space coordinate on a circle for exploring the possibility of obtaining transitions of second order. The model is also studied as a prototype theory which demonstrates the procedure of such investigations. In the model at hand we find that even on a circle the transitions remain those of first order.

Abstract: Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the winding number transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.

In recent years several computational systems and techniques fortheorem proving by analogy have been developed. The obvious prac-tical question, however, as to whether and when to use analogy hasbeen neglected badly in these developments. This paper addresses thisquestion, identifies situations where analogy is useful, and discussesthe merits of theorem proving by analogy in these situations. Theresults can be generalized to other domains.

Using particle methods to solve the Boltzmann equation for rarefied gases numerically, in realistic streaming problems, huge differences in the total number of particles per cell arise. In order to overcome the resulting numerical difficulties the application of a weighted particle concept is well-suited. The underlying idea is to use different particle masses in different cells depending on the macroscopic density of the gas. Discrepance estimates and numerical results are given.

Given a finite set of points in the plane and a forbidden region R, we want to find a point X not an element of int(R), such that the weighted sum to all given points is minimized. This location problem is a variant of the well-known Weber Problem, where we measure the distance by polyhedral gauges and allow each of the weights to be positive or negative. The unit ball of a polyhedral gauge may be any convex polyhedron containing the origin. This large class of distance functions allows very general (practical) settings - such as asymmetry - to be modeled. Each given point is allowed to have its own gauge and the forbidden region R enables us to include negative information in the model. Additionally the use of negative and positive weights allows to include the level of attraction or dislikeness of a new facility. Polynomial algorithms and structural properties for this global optimization problem (d.c. objective function and a non-convex feasible set) based on combinatorial and geometrical methods are presented.

We introduce a class of models for time series of counts which include INGARCH-type models as well as log linear models for conditionally Poisson distributed data. For those processes, we formulate simple conditions for stationarity and weak dependence with a geometric rate. The coupling argument used in the proof serves as a role model for a similar treatment of integer-valued time series models based on other types of thinning operations.

By means of the limit and jump relations of classical potential theory the framework of a wavelet approach on a regular surface is established. The properties of a multiresolution analysis are verified, and a tree algorithm for fast computation is developed based on numerical integration. As applications of the wavelet approach some numerical examples are presented, including the zoom-in property as well as the detection of high frequency perturbations. At the end we discuss a fast multiscale representation of the solution of (exterior) Dirichlet's or Neumann's boundary-value problem corresponding to regular surfaces.

This work is dedicated to the wavelet modelling of regional and temporal variations of the Earth's gravitational potential observed by GRACE. In the first part, all required mathematical tools and methods involving spherical wavelets are introduced. Then we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified, which is restricted to areas, where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time series of regionally obtained wavelet coefficients of the gravitational signal originated from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement to previous studies and illustrate that wavelets are an appropriate tool to investigate regional time-variable effects in the gravitational field.

In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

A multiscale method is introduced using spherical (vector) wavelets for the computation of the earth's magnetic field within source regions of ionospheric and magnetospheric currents. The considerations are essentially based on two geomathematical keystones, namely (i) the Mie representation of solenoidal vector fields in terms of toroidal and poloidal parts and (ii) the Helmholtz decomposition of spherical (tangential) vector fields. Vector wavelets are shown to provide adequate tools for multiscale geomagnetic modelling in form of a multiresolution analysis, thereby completely circumventing the numerical obstacles caused by vector spherical harmonics. The applicability and efficiency of the multiresolution technique is tested with real satellite data.

In this paper, the reflection and refraction of a plane wave at an interface between .two half-spaces composed of triclinic crystalline material is considered. It is shown that due to incidence of a plane wave three types of waves namely quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) will be generated governed by the propagation condition involving the acoustic tensor. A simple procedure has been presented for the calculation of all the three phase velocities of the quasi waves. It has been considered that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. Relations are established between directions of motion and propagation, respectively. The expressions for reflection and refraction coefficients of qP, qSV and qSH waves are obtained. Numerical results of reflection and refraction coefficients are presented for different types of anisotropic media and for different types of incident waves. Graphical representation have been made for incident qP waves and for incident qSV and qSH waves numerical data are presented in two tables.

Wannier-Stark states for semiconductor superlattices in strong static fields, where the interband Landau-Zener tunneling cannot be neglected, are rigorously calculated. The lifetime of these metastable states was found to show multiscale oscillations as a function of the static field, which is explained by an interaction with above-barrier resonances. An equation, expressing the absorption spectrum of semiconductor superlattices in terms of the resonance Wannier-Stark states is obtained and used to calculate the absorption spectrum in the region of high static fields.

In this work, we discuss the resonance states of a quantum particle in a periodic potential plus static force. Originally this problem was formulated for a crystalline electron subject to the static electric field and is known nowadays as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and, in this sense, solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems like optical or semiconductor superlattices.