### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (643) (remove)

#### Language

- English (643) (remove)

#### Keywords

- Visualisierung (13)
- finite element method (9)
- Finite-Elemente-Methode (7)
- Visualization (7)
- Algebraische Geometrie (6)
- Numerische Strömungssimulation (6)
- Computergraphik (5)
- Finanzmathematik (5)
- Mobilfunk (5)
- Optimization (5)

#### Faculty / Organisational entity

- Fachbereich Mathematik (223)
- Fachbereich Informatik (146)
- Fachbereich Maschinenbau und Verfahrenstechnik (96)
- Fachbereich Chemie (59)
- Fachbereich Elektrotechnik und Informationstechnik (46)
- Fachbereich Biologie (29)
- Fachbereich Sozialwissenschaften (17)
- Fachbereich Wirtschaftswissenschaften (10)
- Fachbereich Physik (6)
- Fachbereich ARUBI (5)

This thesis aims to examine various determinants of perceived team diversity on the on hand, and, on the other hand, the individual consequences of perceived team diversity. To ensure a strong theoretical foundation, I integrate and discuss different conceptualizations of and theoretical approaches to team diversity, empirically examined in three independent studies. The first study investigates the relationship between objective team diversity and perceived team diversity, and as moderators individual attitudes toward diversity and perception of one’s own work team’s diversity. The second study answers the questions of why and when dirty-task frequency impairs employees’ work relations and the third study examines how different cognitive mechanisms mediate the relationships between employees’ perceptions of different types of subgroups and their elaboration of information and perspectives. Taken together, study results provide support for the selection-extraction-application model of people perception and the assumption that individuals can integrate objective team characteristics into their mental representation of teams, using them to judging the team. Moreover, results show that a fit between perceived supervisor support and perceived organizational value of diversity can buffer the effects of dirty-task frequency on perception of identity-based subgroups, as well as perceived relationship conflict and surface acting, through employees’ perceptions of identity-based subgroups. Also, perceived social-identity threat and perceived procedural fairness but not perceived distributive fairness and perceived transactive memory systems serve as cognitive mechanisms of the relationships between employees’ perceptions of different types of subgroups and their elaboration of information and perspectives. These results contribute to diversity literature, such as the theory of subgroups in work teams and the categorization-elaboration model. In addition, I propose the input-mediator-output-input model of perceived team diversity, based on the study results, and recommend practitioners to develop diversity mindsets in teams.

The advent of heterogeneous many-core systems has increased the spectrum
of achievable performance from multi-threaded programming. As the processor components become more distributed, the cost of synchronization and
communication needed to access the shared resources increases. Concurrent
linearizable access to shared objects can be prohibitively expensive in a high
contention workload. Though there are various mechanisms (e.g., lock-free
data structures) to circumvent the synchronization overhead in linearizable
objects, it still incurs performance overhead for many concurrent data types.
Moreover, many applications do not require linearizable objects and apply
ad-hoc techniques to eliminate synchronous atomic updates.
In this thesis, we propose the Global-Local View Model. This programming model exploits the heterogeneous access latencies in many-core systems.
In this model, each thread maintains different views on the shared object: a
thread-local view and a global view. As the thread-local view is not shared,
it can be updated without incurring synchronization costs. The local updates
become visible to other threads only after the thread-local view is merged
with the global view. This scheme improves the performance at the expense
of linearizability.
Besides the weak operations on the local view, the model also allows strong
operations on the global view. Combining operations on the global and the
local views, we can build data types with customizable consistency semantics
on the spectrum between sequential and purely mergeable data types. Thus
the model provides a framework that captures the semantics of Multi-View
Data Types. We discuss a formal operational semantics of the model. We
also introduce a verification method to verify the correctness of the implementation of several multi-view data types.
Frequently, applications require updating shared objects in an “all-or-nothing” manner. Therefore, the mechanisms to synchronize access to individual objects are not sufficient. Software Transactional Memory (STM)
is a mechanism that helps the programmer to correctly synchronize access to
multiple mutable shared data by serializing the transactional reads and writes.
But under high contention, serializable transactions incur frequent aborts and
limit parallelism, which can lead to severe performance degradation.
Mergeable Transactional Memory (MTM), proposed in this thesis, allows accessing multi-view data types within a transaction. Instead of aborting
and re-executing the transaction, MTM merges its changes using the data-type
specific merge semantics. Thus it provides a consistency semantics that allows
for more scalability even under contention. The evaluation of our prototype
implementation in Haskell shows that mergeable transactions outperform serializable transactions even under low contention while providing a structured
and type-safe interface.

The iterative development and evaluation of the gamified stress management app “Stress-Mentor”
(2020)

The gamification of mHealth applications is a critically discussed topic. On one hand, studies show that gamification can have positive impact on an app’s usability and user experience. Furthermore, evidence grows that gamification can positively influence the regular usage of health apps. On the other hand it is questioned whether gamification is useful for health apps in all contexts, especially regarding stress management. However, to this point few studies investigated the gamification of stress management apps.
This thesis describes the iterative development of the gamified stress management app “Stress-Mentor” and examines whether the implemented gamification concept results in changes in the app’s usage behavior, as well as in usability and user experience ratings.
The results outline how the users’ involvement in “Stress-Mentor’s” development through different studies influenced the app’s design and helped to identify necessary improvements. The thesis also shows that users who received a gamified app version used the app more frequently than users of a non-gamified control group.
While gamification of stress management is critically discussed, it was positively received by the users of “Stress-Mentor” throughout the app’s development. The results also showed that gamification can have positive effects on the usage behavior of a stress management app and therefore, results in an increased exposure to the app’s content. Moreover, an expert study outlined the applicability of “Stress-Mentor’s” concept for other health contexts.

In a recent paper, G. Malle and G. Robinson proposed a modular anologue to Brauer's famous \( k(B) \)-conjecture. If \( B \) is a \( p \)-block of a finite group with defect group \( D \), then they conjecture that \( l(B) \leq p^r \), where \( r \) is the sectional \( p \)-rank of \( D \). Since this conjecture is relatively new, there is obviously still a lot of work to do. This thesis is concerned with proving their conjecture for the finite groups of exceptional Lie type.

Spin-crossover and valence tautomeric complexes are of tremendous interest in the field of molecular electronics, electronic storage devices and information processing. Herein, synthesis and characterization of the spin-crossover and valence tautomeric cobalt dioxolene complexes are reported. All the synthesized complexes contain N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane (L-N4tBu2) as ancillary ligands. Only various types of co-ligands which are different dioxolene ligands, have been used. The mononuclear cobalt dioxolene complexes have been synthesized by using dideprotonated form of the dioxolene ligand 4,5-dichlorocatechol (H2DCCat) as co-ligands, and the cobalt bis(dioxolene) complexes have been synthesized by using dideprotonated form of the 3,3'-dihydroxy-diphenoquinone-(4,4') (H2(SQ-SQ)) as co-ligands.
Analytically pure samples of the complexes [Co(L-N4tBu2)(DCCat)] (1), [Co(L-N4tBu2)(DCCat)](BPh4) (2b), [Co2(L-N4tBu2)2(SQ-SQ)](BPh4)2.4 DMF (3b), [Co2(L-N4tBu2)2(Cat-SQ)](BF4)2.Et2O (3d), have been synthesized and characterized by X-ray crystallography, magnetic and electrochemical measurements. The complexes have been investigated by UV/Vis/NIR-, IR-, and NMR spectroscopic measurements.
The complex [Co(L-N4tBu2)(DCCat)] (1) shows temperature invariant high-spin cobalt(II) catecholate state. One-electron oxidation of 1 has yielded the complex [Co(L-N4tBu2)(DCCat)](BPh4) (2b). The solid state properties of 2b are best described by the low-spin cobalt(III) catecholate state, but the solution state properties of the complex 2b are best described by the valence tautomeric transition from the low-spin cobalt(III) catecholate to the low-spin cobalt(II) semiquinonate state.
For the cobalt bis(dioxolene) complexes, it is found that spin-crossover for the two cobalt(II) centers is accompanied by the electronic state changes of the coordinated bis(dioxolene) unit from singlet open-shell biradicaloid to singlet closed-shell quinonoid form in complex 3b. Approaching similar synthetic method to 3b, but performing the metathesis reaction with sodium tetrafluoroborate rather than sodium tetraphenylborate has resulted in the formation of the complex [Co2(L-N4tBu2)2(Cat-SQ)](BF4)2.Et2O (3d). The solid state properties of the complex are best described by the temperature induced valence tautomeric transition for the low-spin cobalt(III) center which is accompanied by the spin-crossover process for the cobalt(II) center. Thus, the electronic state of the complex 3d changes from LS-CoIII-Cat-SQ-CoII-LS to HS-CoII-(SQ-SQ)CS-CoII-HS state upon change in temperature.
Temperature-induced electronic configuration changes of the (SQ-SQ)CS2- ligands from open-shell biradicaloid to closed-shell quinonoid configurations are not observed for the nickel-, copper- and zinc bis(dioxolene) complexes 4a, 5a and 6b, respectively. For these complexes, the metal ions are bridged by (SQ-SQ)CS2- ligand and the paramagnetic metal ions are very weakly antiferromagnetically coupled.

More than ten years ago, ER-ANT1 was shown to act as an ATP/ADP antiporter and to exist in the endoplasmic reticulum (ER) of higher plants. Because structurally different transporters generally mediate energy provision to the ER, the physiological function of ER-ANT1 was not directly evident.
Interestingly, mutant plants lacking ER-ANT1 exhibit a photorespiratory phenotype. Although many research efforts were undertaken, the possible connection between the transporter and photorespiration also remained elusive. Here, a forward genetic approach was used to decipher the role of ER-ANT1 in the plant context and its association to photorespiration.
This strategy identified that additional absence of a putative HAD-type phosphatase partially restored the photorespiratory phenotype. Localisation studies revealed that the corresponding protein is targeted to the chloroplast. Moreover, biochemical analyses demonstrate that the HAD-type phosphatase is specific for pyridoxal phosphate. These observations, together with transcriptional and metabolic data of corresponding single (ER-ANT1) and double (ER-ANT1, phosphatase) loss-of-function mutant plants revealed an unexpected connection of ER-ANT1 to vitamin B6 metabolism.
Finally, a scenario is proposed, which explains how ER-ANT1 may influence B6 vitamer phosphorylation, by this affects photorespiration and causes several other physiological alterations observed in the corresponding loss-of-function mutant plants.

As visualization as a field matures, the discussion about the development of a
theory of the field becomes increasingly vivid. Despite some voices claiming that
visualization applications would be too different from each other to generalize,
there is a significant push towards a better understanding of the principles underlying
visual data analysis. As of today, visualization is primarily data-driven.
Years of experience in the visalization of all kinds of different data accumulated
a vast reservoir of implicit knowledge in the community of how to best represent
data according to its shape, its format, and what it is meant to express.
This knowledge is complemented by knowledge imported to visualization from
a variety of other fields, for example psychology, vision science, color theory,
and information theory. Yet, a theory of visualization is still only nascent. One
major reason for that is the field's too strong focus on the quantitative aspects
of data analysis. Although when designing visualizations major design decisions
also consider perception and other human factors, the overall appearance
of visualizations as of now is determined primarily by the type and format of
the data to be visualized and its quantitative attributes like scale, range, or
density. This is also reflected by the current approaches in theoretical work on
visualization. The models developed in this regard also concentrate primarily
on perceptual and quantitative aspects of visual data analysis. Qualitative considerations
like the interpretations made by viewers and the conclusions drawn
by analysts currently only play a minor role in the literature. This Thesis contributes
to the nascent theory of visualization by investigating approaches to
the explicit integration of qualitative considerations into visual data analysis.
To this end, it promotes qualitative visual analysis, the explicit discussion of
the interpretation of artifacts and structures in the visualization, of efficient
workflows designed to optimally support an analyst's reasoning strategy and
capturing information about insight provenance, and of design methodology
tailoring visualizations towards the insights they are meant to provide rather
than to the data they show. Towards this aim, three central qualitative principles
of visual information encodings are identified during the development of
a model for the visual data analysis process that explicitly includes the anticipated
reasoning structure into the consideration. This model can be applied
throughout the whole life cycle of a visualization application, from the early
design phase to the documentation of insight provenance during analysis using
the developed visualization application. The three principles identified inspire
novel visual data analysis workflows aiming for an insight-driven data analysis
process. Moreover, two case studies prove the benefit of following the qualitative
principles of visual information encodings for the design of visualization
applications. The formalism applied to the development of the presented theoretical
framework is founded in formal logics, mathematical set theory, and the
theory of formal languages and automata. The models discussed in this Thesis
and the findings derived from them are therefore based on a mathematically
well-founded theoretical underpinning. This Thesis establishes a sound theoretical
framework for the design and description of visualization applications and
the prediction of the conclusions an analyst is capable of drawing from working
with the visualization. Thereby, it contributes an important piece to the yet
unsolved puzzle of developing a visualization theory.

This thesis investigates how smart sensors can quantify the process of learning. Traditionally, human beings have obtained various skills by inventing technologies. Those who integrate technologies into daily life and enhance their capabilities are called augmented humans. While most existing augmenting human technologies focus on directly assisting specific skills, the objective of this thesis is to assist learning -- the meta-skill to master new skills -- with the aim of long-term augmentations.
Learning consists of cognitive activities such as reading, writing, and watching. It has been considered that tracking them by motion sensors (in the same way as the recognition of physical activities) is a challenging task because dynamic body movements could not be observed during cognitive activities. I have solved this problem with smart sensors monitoring eye movements and physiological signals.
I propose activity recognition methods using sensors built into eyewear computers. Head movements and eye blinks measured by an infrared proximity sensor on Google Glass could classify five activities including reading with 82% accuracy. Head and eye movements measured by electrooculography on JINS MEME could classify four activities with 70% accuracy. In a wild experiment involving seven participants who wore JINS MEME more than two weeks, deep neural networks could detect natural reading activities with 74% accuracy. I demonstrate Wordometer 2.0, an application to estimate the number of rear words on JINS MEME, which was evaluated in a dataset involving five readers with 11% error rate.
Smart sensors can recognize not only activities but also internal states during the activities. I present an expertise recognition method using an eye tracker which performs 70% classification accuracy into three classes using one minute data of reading a textbook, a positive correlation between interest and pupil diameter (p < 0.01), a negative correlation between mental workload and nose temperature measured by an infrared thermal camera (p < 0.05), an interest detection on newspaper articles, and effective gaze and physiological features to estimate self-confidence while solving multiple choice questions and spelling tests of English vocabulary.
The quantified learning process can be utilized for feedback to each learner on the basis of the context. I present HyperMind, an interactive intelligent digital textbook. It can be developed on HyperMind Builder which may be employed to augment any electronic text by multimedia aspects activated via gaze.
Applications mentioned above have already been deployed at several laboratories including Immersive Quantified Learning Lab (iQL-Lab) at the German Research Center for Artificial Intelligence (DFKI).

Nowadays a large part of communication is taking place on social media platforms such as Twitter, Facebook, Instagram, or YouTube, where messages often include multimedia contents (e.g., images, GIFs or videos). Since such messages are in digital form, computers can in principle process them in order to make our lives more convenient and help us overcome arising issues. However, these goals require the ability to capture what these messages mean to us, that is, how we interpret them from our own subjective points of view. Thus, the main goal of this dissertation is to advance a machine's ability to interpret social media contents in a more natural, subjective way.
To this end, three research questions are addressed. The first question aims at answering "How to model human interpretation for machine learning?" We describe a way of modeling interpretation which allows for analyzing single or multiple ways of interpretation of both humans and computer models within the same theoretic framework. In a comprehensive survey we collect various possibilities for such a computational analysis. Particularly interesting are machine learning approaches where a single neural network learns multiple ways of interpretation. For example, a neural network can be trained to predict user-specific movie ratings from movie features and user ID, and can then be analyzed to understand how users rate movies. This is a promising direction, as neural networks are capable of learning complex patterns. However, how analysis results depend on network architecture is a largely unexplored topic. For the example of movie ratings, we show that the way of combining information for prediction can affect both prediction performance and what the network learns about the various ways of interpretation (corresponding to users).
Since some application-specific details for dealing with human interpretation only become visible when going deeper into particular use-cases, the other two research questions of this dissertation are concerned with two selected application domains: Subjective visual interpretation and gang violence prevention. The first application study deals with subjectivity that comes from personal attitudes and aims at answering "How can we predict subjective image interpretation one would expect from the general public on photo-sharing platforms such as Flickr?" The predictions in this case take the form of subjective concepts or phrases. Our study on gang violence prevention is more community-centered and considers the question "How can we automatically detect tweets of gang members which could potentially lead to violence?" There, the psychosocial codes aggression, loss and substance use serve as proxy to estimate the subjective implications of online messages.
In these two distinct application domains, we develop novel machine learning models for predicting subjective interpretations of images or tweets with images, respectively. In the process of building these detection tools, we also create three different datasets which we share with the research community. Furthermore, we see that some domains such as Chicago gangs require special care due to high vulnerability of involved users. This motivated us to establish and describe an in-depth collaboration between social work researchers and computer scientists. As machine learning is incorporating more and more subjective components and gaining societal impact, we have good reason to believe that similar collaborations between the humanities and computer science will become increasingly necessary to advance the field in an ethical way.

This work describes the development of a continuum phase field model that can describe static as well as dynamic wetting scenarios on the nano- and microscale.
The model reaches this goal by a direct integration of an equation of state as well as a direct integration of the dissipative properties of a specific fluid, which are both obtained from molecular simulations. The presented approach leads to good agreement between the predictions of the phase field model and the physical properties of the regarded fluid.
The implementation of the model employs a mixed finite element formulation, a newly developed semi-implicit time integration scheme, as well as the concept of hyper-dual numbers. This ensures a straightforward and robust exchangeability of the constitutive equation for the regarded fluid.
The presented simulations show good agreement between the results of the present phase field model and results from molecular dynamics simulations. Furthermore, the results show that the model enables the investigation of wetting scenarios on the microscale. The continuum phase field model of this work bridges the gap between the molecular models on the nanoscale and the phenomenologically motivated continuum models on the macroscale.

In this thesis we study a variant of the quadrature problem for stochastic differential equations (SDEs), namely the approximation of expectations \(\mathrm{E}(f(X))\), where \(X = (X(t))_{t \in [0,1]}\) is the solution of an SDE and \(f \colon C([0,1],\mathbb{R}^r) \to \mathbb{R}\) is a functional, mapping each realization of \(X\) into the real numbers. The distinctive feature in this work is that we consider randomized (Monte Carlo) algorithms with random bits as their only source of randomness, whereas the algorithms commonly studied in the literature are allowed to sample from the uniform distribution on the unit interval, i.e., they do have access to random numbers from \([0,1]\).
By assumption, all further operations like, e.g., arithmetic operations, evaluations of elementary functions, and oracle calls to evaluate \(f\) are considered within the real number model of computation, i.e., they are carried out exactly.
In the following, we provide a detailed description of the quadrature problem, namely we are interested in the approximation of
\begin{align*}
S(f) = \mathrm{E}(f(X))
\end{align*}
for \(X\) being the \(r\)-dimensional solution of an autonomous SDE of the form
\begin{align*}
\mathrm{d}X(t) = a(X(t)) \, \mathrm{d}t + b(X(t)) \, \mathrm{d}W(t), \quad t \in [0,1],
\end{align*}
with deterministic initial value
\begin{align*}
X(0) = x_0 \in \mathbb{R}^r,
\end{align*}
and driven by a \(d\)-dimensional standard Brownian motion \(W\). Furthermore, the drift coefficient \(a \colon \mathbb{R}^r \to \mathbb{R}^r\) and the diffusion coefficient \(b \colon \mathbb{R}^r \to \mathbb{R}^{r \times d}\) are assumed to be globally Lipschitz continuous.
For the function classes
\begin{align*}
F_{\infty} = \bigl\{f \colon C([0,1],\mathbb{R}^r) \to \mathbb{R} \colon |f(x) - f(y)| \leq \|x-y\|_{\sup}\bigr\}
\end{align*}
and
\begin{align*}
F_p = \bigl\{f \colon C([0,1],\mathbb{R}^r) \to \mathbb{R} \colon |f(x) - f(y)| \leq \|x-y\|_{L_p}\bigr\}, \quad 1 \leq p < \infty.
\end{align*}
we have established the following.
\[\]
\(\textit{Theorem 1.}\)
There exists a random bit multilevel Monte Carlo (MLMC) algorithm \(M\) using
\[
L = L(\varepsilon,F) = \begin{cases}\lceil{\log_2(\varepsilon^{-2}}\rceil, &\text{if} \ F = F_p,\\
\lceil{\log_2(\varepsilon^{-2} + \log_2(\log_2(\varepsilon^{-1}))}\rceil, &\text{if} \ F = F_\infty
\end{cases}
\]
and replication numbers
\[
N_\ell = N_\ell(\varepsilon,F) = \begin{cases}
\lceil{(L+1) \cdot 2^{-\ell} \cdot \varepsilon^{-2}}\rceil, & \text{if} \ F = F_p,\\
\lceil{(L+1) \cdot 2^{-\ell} \cdot \max(\ell,1) \cdot \varepsilon^{-2}}\rceil, & \text{if} \ F=f_\infty
\end{cases}
\]
for \(\ell = 0,\ldots,L\), for which exists a positive constant \(c\) such that
\begin{align*}
\mathrm{error}(M,F) = \sup_{f \in F} \bigl(\mathrm{E}(S(f) - M(f))^2\bigr)^{1/2} \leq c \cdot \varepsilon
\end{align*}
and
\begin{align*}
\mathrm{cost}(M,F) = \sup_{f \in F} \mathrm{E}(\mathrm{cost}(M,f)) \leq c \cdot \varepsilon^{-2} \cdot \begin{cases}
(\ln(\varepsilon^{-1}))^2, &\text{if} \ F=F_p,\\
(\ln(\varepsilon^{-1}))^3, &\text{if} \ F=F_\infty
\end{cases}
\end{align*}
for every \(\varepsilon \in {]0,1/2[}\).
\[\]
Hence, in terms of the \(\varepsilon\)-complexity
\begin{align*}
\mathrm{comp}(\varepsilon,F) = \inf\bigl\{\mathrm{cost}(M,F) \colon M \ \text{is a random bit MC algorithm}, \mathrm{error}(M,F) \leq \varepsilon\bigr\}
\end{align*}
we have established the upper bound
\begin{align*}
\mathrm{comp}(\varepsilon,F) \leq c \cdot \varepsilon^{-2} \cdot \begin{cases}
(\ln(\varepsilon^{-1}))^2, &\text{if} \ F=F_p,\\
(\ln(\varepsilon^{-1}))^3, &\text{if} \ F=F_\infty
\end{cases}
\end{align*}
for some positive constant \(c\). That is, we have shown the same weak asymptotic upper bound as in the case of random numbers from \([0,1]\). Hence, in this sense, random bits are almost as powerful as random numbers for our computational problem.
Moreover, we present numerical results for a non-analyzed adaptive random bit MLMC Euler algorithm, in the particular cases of the Brownian motion, the geometric Brownian motion, the Ornstein-Uhlenbeck SDE and the Cox-Ingersoll-Ross SDE. We also provide a numerical comparison to the corresponding adaptive random number MLMC Euler method.
A key challenge in the analysis of the algorithm in Theorem 1 is the approximation of probability distributions by means of random bits. A problem very closely related to the quantization problem, i.e., the optimal approximation of a given probability measure (on a separable Hilbert space) by means of a probability measure with finite support size.
Though we have shown that the random bit approximation of the standard normal distribution is 'harder' than the corresponding quantization problem (lower weak rate of convergence), we have been able to establish the same weak rate of convergence as for the corresponding quantization problem in the case of the distribution of a Brownian bridge on \(L_2([0,1])\), the distribution of the solution of a scalar SDE on \(L_2([0,1])\), and the distribution of a centered Gaussian random element in a separable Hilbert space.

Activity recognition has continued to be a large field in computer science over the last two decades. Research questions from 15 years ago have led to solutions that today support our daily lives. Specifically, the success of smartphones or more recent developments of other smart devices (e.g., smart-watches) is rooted in applications that leverage on activity analysis and location tracking (fitness applications and maps). Today we can track our physical health and fitness and support our physical needs by merely owning (and using) a smart-phone. Still, the quality of our lives does not solely rely on fitness and physical health but also more increasingly on our mental well-being. Since we have learned how practical and easy it is to have a lot of functions, including health support on just one device, it would be specifically helpful if we could also use the smart-phone to support our mental and cognitive health if need be.
The ultimate goal of this work is to use sensor-assisted location and motion analysis to support various aspects of medically valid cognitive assessments.
In this regard, this thesis builds on Hypothesis 3: Sensors in our ubiquitous environment can collect information about our cognitive state, and it is possible to extract that information. In addition, these data can be used to derive complex cognitive states and to predict possible pathological changes in humans. After all, not only is it possible to determine the cognitive state through sensors but also to assist people in difficult situations through these sensors.
Thus, in the first part, this thesis focuses on the detection of mental state and state changes.
The primary purpose is to evaluate possible starting points for sensor systems in order to enable a clinically accurate assessment of mental states. These assessments must work on the condition that a developed system must be able to function within the given limits of a real clinical environment.
Despite the limitations and challenges of real-life deployments, it was possible to develop methods for determining the cognitive state and well-being of the residents. The analysis of the location data provides a correct classification of cognitive state with an average accuracy of 70% to 90%.
Methods to determine the state of bipolar patients provide an accuracy of 70-80\% for the detection of different cognitive states (total seven classes) using single sensors and 76% for merging data from different sensors. Methods for detecting the occurrence of state changes, a highlight of this work, even achieved a precision and recall of 95%.
The comparison of these results with currently used standard methods in psychiatric care even shows a clear advantage of the sensor-based method. The accuracy of the sensor-based analysis is 60% higher than the accuracy of the currently used methods.
The second part of this thesis introduces methods to support people’s actions in stressful situations on the one hand and analyzes the interaction between people during high-pressure activities on the other.
A simple, acceleration based, smartwatch instant feedback application was used to help laypeople to learn to perform CPR (cardiopulmonary resuscitation) in an emergency on the fly.
The evaluation of this application in a study with 43 laypersons showed an instant improvement in the CPR performance of 50%. An investigation of whether training with such an instant feedback device can support improved learning and lead to more permanent effects for gaining skills was able to confirm this theory.
Last but not least, with the main interest shifting from the individual to a group of people at the end of this work, the question: how can we determine the interaction between individuals within a group of people? was answered by developing a methodology to detect un-voiced collaboration in random ad-hoc groups. An evaluation with data retrieved from video footage provides an accuracy of up to more than 95%, and even with artificially introduced errors rates of 20%, still an accuracy of 70% precision, and 90% recall can be achieved.
All scenarios in this thesis address different practical issues of today’s health care. The methods developed are based on real-life datasets and real-world studies.

Biological clocks exist across all life forms and serve to coordinate organismal physiology with periodic environmental changes. The underlying mechanism of these clocks is predominantly based on cellular transcription-translation feedback loops in which clock proteins mediate the periodic expression of numerous genes. However, recent studies point to the existence of a conserved timekeeping mechanism independent of cellular transcription and translation, but based on cellular metabolism. These metabolic clocks were concluded based upon the observation of circadian and ultradian oscillations in the level of hyperoxidized peroxiredoxin proteins. Peroxiredoxins are enzymes found almost ubiquitously throughout life. Originally identified as H2O2 scavengers, recent studies show that peroxiredoxins can transfer oxidation to, and thereby regulate, a wide range of cellular proteins. Thus, it is conceivable that peroxiredoxins, using H2O2 as the primary signaling molecule, have the potential to integrate and coordinate much of cellular physiology and behavior with metabolic changes. Nonetheless, it remained unclear if peroxiredoxins are passive reporters of metabolic clock activity or active determinants of cellular timekeeping. Budding yeast possess an ultradian metabolic clock termed the Yeast Metabolic Cycle (YMC). The most obvious feature of the YMC is a high amplitude oscillation in oxygen consumption. Like circadian clocks, the YMC temporally compartmentalizes cellular processes (e.g. metabolism) and coordinates cellular programs such as gene expression and cell division. The YMC also exhibits oscillations in the level of hyperoxidized peroxiredoxin proteins.
In this study, I used the YMC clock model to investigate the role of peroxiredoxins in cellular timekeeping, as well as the coordination of cell division with the metabolic clock. I observed that cytosolic 2-Cys peroxiredoxins are essential for robust metabolic clock function. I provide direct evidence for oscillations in cytosolic H2O2 levels, as well as cyclical changes in oxidation state of a peroxiredoxin and a model peroxiredoxin target protein during the YMC. I noted two distinct metabolic states during the YMC: low oxygen consumption (LOC) and high oxygen consumption (HOC). I demonstrate that thiol-disulfide oxidation and reduction are necessary for switching between LOC and HOC. Specifically, a thiol reductant promotes switching to HOC, whilst a thiol oxidant prevents switching to HOC, forcing cells to remain in LOC. Transient peroxiredoxin inactivation triggered rapid and premature switching from LOC to HOC. Furthermore, I show that cell division is normally synchronized with the YMC and that deletion of typical 2-Cys peroxiredoxins leads to complete uncoupling of cell division from metabolic cycling. Moreover, metabolic oscillations are crucial for regulating cell cycle entry and exit. Intriguingly, switching to HOC is crucial for initiating cell cycle entry whilst switching to LOC is crucial for cell cycle completion and exit. Consequently, forcing cells to remain in HOC by application of a thiol reductant leads to multiple rounds of cell cycle entry despite failure to complete the preceding cell cycle. On the other hand, forcing cells to remain in LOC by treating with a thiol oxidant prevents initiation of cell cycle entry.
In conclusion, I propose that peroxiredoxins – by controlling metabolic cycles, which are in turn crucial for regulating the progression through cell cycle – play a central role in the coordination of cellular metabolism with cell division. This proposition, thus, positions peroxiredoxins as active players in the cellular timekeeping mechanism.

Diversification is one of the main pillars of investment strategies. The prominent 1/N portfolio, which puts equal weight on each asset is, apart from its simplicity, a method which is hard to outperform in realistic settings, as many studies have shown. However, depending on the number of considered assets, this method can lead to very large portfolios. On the other hand, optimization methods like the mean-variance portfolio suffer from estimation errors, which often destroy the theoretical benefits. We investigate the performance of the equal weight portfolio when using fewer assets. For this we explore different naive portfolios, from selecting the best Sharpe ratio assets to exploiting knowledge about correlation structures using clustering methods. The clustering techniques separate the possible assets into non-overlapping clusters and the assets within a cluster are ordered by their Sharpe ratio. Then the best asset of each portfolio is chosen to be a member of the new portfolio with equal weights, the cluster portfolio. We show that this portfolio inherits the advantages of the 1/N portfolio and can even outperform it empirically. For this we use real data and several simulation models. We prove these findings from a statistical point of view using the framework by DeMiguel, Garlappi and Uppal (2009). Moreover, we show the superiority regarding the Sharpe ratio in a setting, where in each cluster the assets are comonotonic. In addition, we recommend the consideration of a diversification-risk ratio to evaluate the performance of different portfolios.

In an overall effort to contribute to the steadily expanding EO literature, this cumulative dissertation aims to help the literature to advance with greater clarity, comprehensive modeling, and more robust research designs. To achieve this, the first paper of this dissertation focuses on the consistency and coherence in variable choices and modeling considerations by conducting a systematic quantitative review of the EO-performance literature. Drawing on the plethora of previous EO studies, the second paper employs a comprehensive meta-analytic structural equation modeling approach (MASEM) to explore the potential for unique component-level relationships among EO’s three core dimensions in antecedent to outcome relationships. The third paper draws on these component-level insights and performs a finer-grained replication of the seminal MASEM of Rosenbusch, Rauch, and Bausch (2013) that proposes EO as a full mediator between the task environment and firm performance. The fourth and final paper of this cumulative dissertation illustrates exigent endogeneity concerns inherent in observational EO-performance research and provides guidance on how researchers can move towards establishing causal relationships.

The neural networks have been extensively used for tasks based on image sensors. These models have, in the past decade, consistently performed better than other machine learning methods on tasks of computer vision. It is understood that methods for transfer learning from neural networks trained on large datasets can reduce the total data requirement while training new neural network models. These methods tend not to perform well when the data recording sensor or the recording environment is unique from the existing large datasets. The machine learning literature provides various methods for prior-information inclusion in a learning model. Such methods employ methods like designing biases into the data representation vectors, enforcing priors or physical constraints on the models. Including such information into neural networks for the image frames and image-sequence classification is hard because of the very high dimensional neural network mapping function and little information about the relation between the neural network parameters. In this thesis, we introduce methods for evaluating the statistically learned data representation and combining these information descriptors. We have introduced methods for including information into neural networks. In a series of experiments, we have demonstrated methods for adding the existing model or task information to neural networks. This is done by 1) Adding architectural constraints based on the physical shape information of the input data, 2) including weight priors on neural networks by training them to mimic statistical and physical properties of the data (hand shapes), and 3) by including the knowledge about the classes involved in the classification tasks to modify the neural network outputs. These methods are demonstrated, and their positive influence on the hand shape and hand gesture classification tasks are reported. This thesis also proposes methods for combination of statistical and physical models with parametrized learning models and show improved performances with constant data size. Eventually, these proposals are tied together to develop an in-car hand-shape and hand-gesture classifier based on a Time of Flight sensor.

Although today’s bipeds are capable of demonstrating impressive locomotion skills, in many aspects, there’s still a big gap compared to the capabilities observed in humans. Partially, this is due to the deployed control paradigms that are mostly based on analytical approaches. The analytical nature of those approaches entails strong model dependencies – regarding the robotic platform as well as the environment – which makes them prone to unknown disturbances. Recently, an increasing number of biologically-inspired control approaches have been presented from which a human-like bipedal gait emerges. Although the control structures only rely on proprioceptive sensory information, the smoothness of the motions and the robustness against external disturbances is impressive. Due to the lack of suitable robotic platforms, until today the controllers have been mostly applied to
simulations.
Therefore, as the first step towards a suitable platform, this thesis presents the Compliant Robotic Leg (CARL) that features mono- as well as biarticular actuation. The design is driven by a set of core-requirements that is primarily derived from the biologically-inspired behavior-based bipedal locomotion control (B4LC) and complemented by further functional aspects from biomechanical research. Throughout the design process, CARL is understood as a unified dynamic system that emerges from the interplay of the mechanics, the electronics, and the control. Thus, having an explicit control approach and the respective gait in mind, the influence of each subsystem on the characteristics of the overall system is considered
carefully.
The result is a planar robotic leg whose three joints are driven by five highly integrated linear SEAs– three mono- and two biarticular actuators – with minimized reflected inertia. The SEAs are encapsulated by FPGA-based embedded nodes that are designed to meet the hard application requirements while enabling the deployment of a full-featured robotic framework. CARL’s foot is implemented using a COTS prosthetic foot; the sensor information is obtained from the deformation of its main structure. Both subsystems are integrated into a leg structure that matches the proportions of a human with a size of 1.7 m.
The functionality of the subsystems, as well as the overall system, is validated experimentally. In particular, the final experiment demonstrates a coordinated walking motion and thereby confirms that CARL can produce the desired behavior – a natural looking, human-like gait is emerging from the interplay of the behavior-based walking control and the mechatronic system. CARL is robust regarding impacts, the redundant actuation system can render the desired joint torques/impedances, and the foot system supports the walking structurally while it provides the necessary sensory information. Considering that there is no movement of the upper trunk, the angle and torque profiles are comparable to the ones found in humans.

Interconnection networks enable fast data communication between components of a digital system. The selection of an appropriate interconnection network and its architecture plays an important role in the development process of the system. The selection of a bad network architecture may significantly delay the communication between components and decrease the overall system performance.
There are various interconnection networks available. Most of them are blocking networks. Blocking means that even though a pair of source and target components may be free, a connection between them might still not be possible due to limited capabilities of the network. Moreover, routing algorithms of blocking networks have to avoid deadlocks and livelocks, which typically does only allow poor real-time guarantees for delivering a message. Nonblocking networks can always manage all requests that are coming from their input components and can therefore deliver all messages in guaranteed time, i.e, with strong real-time guarantees. However, only a few networks are nonblocking and easy to implement. The simplest one is the crossbar network which is a comparably simple circuit with also a simple routing algorithm. However, while its circuit depth of O(log(n)) is optimal, its size increases with O(n^2) and quickly becomes infeasible for large networks. Therefore, the construction of nonblocking networks with a quasipolynomial size O(nlog(n)^a) and polylogarithmic depth O(log(n)^b) turned out as a research problem.
Benes [Clos53; Bene65] networks were the first non blocking networks having an optimal size of O(nlog(n)) and an optimal depth of O(log(n)), but their routing algorithms are quite complicated and require circuits of depth O(log(n)^2) [NaSa82].
Other nonblocking interconnection networks are derived from sorting networks. Essentially, there are merge-based (MBS) and radix-based (RBS) sorting networks. MBS and RBS networks can be both implemented in a pipelined fashion which leads to a big advantage for their circuit implementation. While these networks are nonblocking and can implement all n! permutations, they cannot directly handle partial permutations that frequently occur in practice since not every input component communicates at every point of time with an output component. For merge-based sorting networks, there is a well known general solution called the Batcher-Banyan network. However, for the larger class of radix-based sorting networks this does not work, and there is only one solution known for a particular permutation network.
In this thesis, new nonblocking radix-based interconnection networks are presented. In particular, for a certain permutation network, three routing algorithms are developed and their circuit implementations are evaluated concerning their size, depth, and power consumption. A special extension of these networks allows them to route also partial permutations. Moreover, three general constructions to convert any binary sorter into a ternary split module were presented which is the key to construct a radix-based interconnection network that can cope with partial permutations. The thesis compares also chip designs of these networks with other radix-based sorting networks as well as with the Batcher-Banyan networks as competitors. As a result, it turns out that the proposed radix-based networks are superior and could form the basis of larger manycore architectures.

Destructive diseases of the lung like lung cancer or fibrosis are still often lethal. Also in case of fibrosis in the liver, the only possible cure is transplantation.
In this thesis, we investigate 3D micro computed synchrotron radiation (SR\( \mu \)CT) images of capillary blood vessels in mouse lungs and livers. The specimen show so-called compensatory lung growth as well as different states of pulmonary and hepatic fibrosis.
During compensatory lung growth, after resecting part of the lung, the remaining part compensates for this loss by extending into the empty space. This process is accompanied by an active vessel growing.
In general, the human lung can not compensate for such a loss. Thus, understanding this process in mice is important to improve treatment options in case of diseases like lung cancer.
In case of fibrosis, the formation of scars within the organ's tissue forces the capillary vessels to grow to ensure blood supply.
Thus, the process of fibrosis as well as compensatory lung growth can be accessed by considering the capillary architecture.
As preparation of 2D microscopic images is faster, easier, and cheaper compared to SR\( \mu \)CT images, they currently form the basis of medical investigation. Yet, characteristics like direction and shape of objects can only properly be analyzed using 3D imaging techniques. Hence, analyzing SR\( \mu \)CT data provides valuable additional information.
For the fibrotic specimen, we apply image analysis methods well-known from material science. We measure the vessel diameter using the granulometry distribution function and describe the inter-vessel distance by the spherical contact distribution. Moreover, we estimate the directional distribution of the capillary structure. All features turn out to be useful to characterize fibrosis based on the deformation of capillary vessels.
It is already known that the most efficient mechanism of vessel growing forms small torus-shaped holes within the capillary structure, so-called intussusceptive pillars. Analyzing their location and number strongly contributes to the characterization of vessel growing. Hence, for all three applications, this is of great interest. This thesis provides the first algorithm to detect intussusceptive pillars in SR\( \mu \)CT images. After segmentation of raw image data, our algorithm works automatically and allows for a quantitative evaluation of a large amount of data.
The analysis of SR\( \mu \)CT data using our pillar algorithm as well as the granulometry, spherical contact distribution, and directional analysis extends the current state-of-the-art in medical studies. Although it is not possible to replace certain 3D features by 2D features without losing information, our results could be used to examine 2D features approximating the 3D findings reasonably well.

Function of two redox sensing kinases from the methanogenic archaeon Methanosarcina acetivorans
(2019)

MsmS is a heme-based redox sensor kinase in Methanosarcina acetivorans consisting of alternating PAS and GAF domains connected to a C-terminal kinase domain. In addition to MsmS, M. acetivorans possesses a second kinase, MA0863 with high sequence similarity. Interestingly, MA0863 possesses an amber codon in its second GAF domain, encoding for the amino acid pyrrolysine. Thus far, no function of this residue has been resolved. In order to examine the heme iron coordination in both proteins, an improved method for the production of heme proteins was established using the Escherichia coli strain Nissle 1917. This method enables the complete reconstitution of a recombinant hemoprotein during protein production, thereby resulting in a native heme coordination. Analysis of the full-length MsmS and MA0863 confirmed a covalently bound heme cofactor, which is connected to one conserved cysteine residue in each protein. In order to identify the coordinating amino acid residues of the heme iron, UV/vis spectra of different variants were measured. These studies revealed His702 in MsmS and the corresponding His666 in MA0863 as the proximal heme ligands. MsmS has previously been described as a heme-based redox sensor. In order to examine whether the same is true for MA0863, redox dependent kinase assays were performed. MA0863 indeed displays redox dependent autophosphorylation activity, which is independent of heme ligands and only observed under oxidizing conditions. Interestingly, autophosphorylation was shown to be independent of the heme cofactor but rather relies on thiol oxidation. Therefore, MA0863 was renamed in RdmS (redox dependent methyltransferase-associated sensor). In order to identify the phosphorylation site of RdmS, thin layer chromatography was performed identifying a tyrosine as the putative phosphorylation site. This observation is in agreement with the lack of a so-called H-box in typical histidine kinases. Due to their genomic localization, MsmS and RdmS were postulated to form two-component systems (TCS) with vicinal encoded regulator proteins MsrG and MsrF. Therefore, protein-protein interaction studies using the bacterial adenylate two hybrid system were performed suggesting an interaction of RdmS and MsmS with the three regulators MsrG/F/C. Due to these multiple interactions these signal transduction pathways should rather be considered multicomponent system instead of two component systems.