### Refine

#### Year of publication

#### Keywords

- Boltzmann Equation (7)
- Numerical Simulation (7)
- Particle Methods (2)
- Rarefied Gas Dynamics (2)
- Boundary Value Problems (1)
- Collision Operator (1)
- Differential Cross-Sections (1)
- Domain Decomposition (1)
- Evolution Equations (1)
- Experimental Data (1)
- Homogeneous Relaxation (1)
- Hybrid Codes (1)
- Kinetic Theory of Gases (1)
- Low-discrepancy sequences (1)
- Monte Carlo method (1)
- Random number generation (1)
- Rarefied Gas Flows (1)
- Rarefied Gsa Dynamics (1)
- Rarefied Polyatomic Gases (1)
- Rayleigh Number (1)
- Shock Wave Problem (1)
- Smoothed Particle Hydrodynamics (1)
- Van Neumann-Kakutani transformation (1)
- asymptotic expansions (1)
- consistency (1)
- inversion method (1)
- mesh-free method (1)
- particle methods (1)
- partition of unity (1)
- rarefied gas flows (1)
- scalar conservation laws (1)
- steady Boltzmann equation (1)
- weak solutions (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (28)
- Fraunhofer (ITWM) (1)

The paper presents some adaptive load balance techniques for the simulation of rarefied gas flows on parallel computers. It is shown that a static load balance is insufficient to obtain a scalable parallel efficiency. Hence, two adaptive techniques are investigated which are based on simple algorithms. Numerical results show that using heuristic techniques one can achieve a sufficiently high efficiency over a wide range of different hardware platforms.

As an alternative to the commonly used Monte Carlo Simulation methods for solving the Boltzmann equation we have developed a new code with certain important improvements. We present results of calculations on the reentry phase of a space shuttle. One aim was to test physical models of internal energies and of gas-surface interactions.

The paper presents some approximation methods for the Boltzmann equation. In the first part fully implicit discretization techniques for the spatially homogeneous Boltzmann equation are investigated. The implicit equation is solved using an iteration process. It is shown that the iteration converges to the correct solution for the moments of the distribution function as long as the mass conservation is strictly fulfilled. For a simple model Boltzmann equation some unexpected features of the implicit scheme and the corresponding iteration process are clarified. In the second part a new iteration algorithm is proposed which should be used for the stationary Boltzmann equation. The realization of the method is very similar to the standard splitting algorithms except some new stochastic elements.

In the present paper we investigate the Rayleigh-Benard convection in rarefied gases and demonstrate by numerical experiments the transition from purely thermal conduction to a natural convective flow for a large range of Knudsen numbers from 0.02 downto 0.001. We address to the problem how the critical value for the Rayleigh number defined for incompressible vsicous flows may be translated to rarefied gas flows. Moreover, the simulations obtained for a Knudsen number Kn=0.001 and Froude number Fr=1 show a further transition from regular Rayleigh-Benard cells to a pure unsteady behavious with moving vortices.

We give a comparison of various differential cross-section models for a classical polyatomic gas for a homogeneous relaxation problem and the shock wave profiles at Mach numbers 1.71 and 12.9. Besides the standard Borgnakke-Larsen model and its generalizations to an energy dependent coefficient to control the amnount of rotationally elastic and completely inelastic collisions, we discuss some new models recently proposed by the same authors. Moreover, we present numerical algorithms to implement the models in a particle or Monte-Carlo code and compare the numerical shock wave profiles with existing experimental data.

This paper contains the basic ideas and practical aspects for numerical methods for solving the Boltzmann Equation. The main field of application considered is the reentry of a Space Shuttle in the transition from free molecular flow to continuum flow. The method used will be called Finite Pointset Method (FPM) approximating the solution by finite sets of particles in a rigorously defined way. Convergence results are cited while practical aspects of the algorithm are emphasized. Ideas for the transition to the Navier Stokes domain are shortly discussed.

This report contains the following three papers about computations of rarefied gas flows:; ; a) Rarefied gas flow around a disc with different angles of attack, published in the proceedings of the 17th RGD Symposium, Aachen, 1990.; ; b) Hypersonic flow calculations around a 3D-deltawing at low Knudsen numbers, published in the proceedings of the 17th RGD Symposium,; Aachen, 1990.; ; c) Rarefied gas flow around a 3D-deltawing, published in the proceedings of the Workshop on Hypersonic Flows for Reentry Problems,; Part 1, Antibes, France, January 22-25, 1990.; ; All computations are part of the HERMES Research and Development Program.

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.

Based on general partitions of unity and standard numerical flux functions, a class of mesh-free methods for conservation laws is derived. A Lax-Wendroff type consistency analysis is carried out for the general case of moving partition functions. The analysis leads to a set of conditions which are checked for the finite volume particle method FVPM. As a by-product, classical finite volume schemes are recovered in the approach for special choices of the partition of unity.

In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.

Particle methods to simulate rarefied gas flows have found an increasing interest in Computational Fluid Dynamics during the last decade, see for example [1], [2], [3] and [4]. The general goal is to develop numerical schemes which are reliable enough to substitute real windtunnel experiments, needed for example in space research, by computer experiments. In order to achieve this goal one needs numerical methods solving the Boltzmann equation including all important physical effects. In general this means 3D computations for a chemically reacting rarefied gas. With codes of this kind at hand, Boltzmann simulation becomes a powerful tool in studying rarefied gas phenomena.

The system of shallow water waves is one of the classical examples for nonlinear, twodimensional conservation laws. The paper investigates a simple kinetic equation depending on a parameter e which leads for e to 0 to the system of shallow water waves. The corresponding equilibrium distribution function has a compact support which depends on the eigenvalues of the hyperbolic system. It is shown that this kind of kinetic approach is restricted to a special class of nonlinear conservation laws. The kinetic model is used to develop a simple particle method for the numerical solution of shallow water waves. The particle method can be implemented in a straightforward way and produces in test examples sufficiently accurate results.

Monte-Carlo methods are widely used numerical tools in various fields of application, like rarefied gas dynamics, vacuum technology, stellar dynamics or nuclear physics. A central part in all applications is the generation of random variates according to a given probability law. Fundamental techniques to generate non-uniform random variates are the inversion principle or the acceptance-rejection method. Both procedures can be quite time-consuming if the given probability law has a complicated structure.; In this paper we consider probability laws depending on a small parameter and investigate the use of asmptotic expansions to generate random variates. The results given in the paper are restrictedto first order expansions. We show error estimates for the discrepancy as well as for the bounded Lipschitz distance of the asymptotic expansion. Furthermore the integration error for some special classes of functions is given. The efficiency of the method is proved by a numerical example from rarefied gas flows.

The paper presents numerical results on the simulation of boundary value problems for the Boltzmann equation in one and two dimensions. In the one-dimensional case, we use prescribed fluxes at the left and diffusive conditions on the right end of a slab to study the resulting steady state solution. Moreover, we compute the numerical density function in velocity space and compare the result with the Chapman-Enskog distribution obtained in the limit for continuous media. The aim of the two-dimensional simulations is to investigate the possibility of a symmetry break in the numerical solution.

We present a particle method for the numerical simulation of boundary value problems for the steady-state Boltzmann equation. Referring to some recent results concerning steady-state schemes, the current approach may be used for multi-dimensional problems, where the collision scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is demonstrated by some numerical results obtained from simulations for the (two-dimensional) BEnard's instability in a rarefied gas flow.