### Refine

#### Year of publication

- 1999 (425) (remove)

#### Document Type

- Preprint (351)
- Article (66)
- Report (4)
- Diploma Thesis (1)
- Lecture (1)
- Periodical Part (1)
- Study Thesis (1)

#### Language

- English (425) (remove)

#### Keywords

- AG-RESY (6)
- Case-Based Reasoning (6)
- HANDFLEX (5)
- Location Theory (5)
- PARO (5)
- case-based problem solving (5)
- Abstraction (4)
- Knowledge Acquisition (4)
- resolution (4)
- Fallbasiertes Schließen (3)

#### Faculty / Organisational entity

We present an approach to learning cooperative behavior of agents. Our ap-proach is based on classifying situations with the help of the nearest-neighborrule. In this context, learning amounts to evolving a set of good prototypical sit-uations. With each prototypical situation an action is associated that should beexecuted in that situation. A set of prototypical situation/action pairs togetherwith the nearest-neighbor rule represent the behavior of an agent.We demonstrate the utility of our approach in the light of variants of thewell-known pursuit game. To this end, we present a classification of variantsof the pursuit game, and we report on the results of our approach obtained forvariants regarding several aspects of the classification. A first implementationof our approach that utilizes a genetic algorithm to conduct the search for a setof suitable prototypical situation/action pairs was able to handle many differentvariants.

The common wisdom that goal orderings can be used to improve planning performance is nearly as old as planning itself. During the last decades of research several approaches emerged that computed goal orderings for different planning paradigms, mostly in the area of state-space planning. For partial-order, plan-space planners goal orderings have not been investigated in much detail. Mechanisms developed for statespace planning are not directly applicable because partial-order planners do not have a current (world) state. Further, it is not completely clear how plan-space planners should make use of goal orderings. This paper describes an approach to extract goal orderings to be used by the plan-space planner CAPlan. The extraction of goal orderings is based on the analysis of an extended version of operator graphs which previously have been found useful for the analysis of interactions and recursion of plan-space planners.

We describe a hybrid architecture supporting planning for machining workpieces. The archi- tecture is built around CAPlan, a partial-order nonlinear planner that represents the plan already generated and allows external control decision made by special purpose programs or by the user. To make planning more efficient, the domain is hierarchically modelled. Based on this hierarchical representation, a case-based control component has been realized that allows incremental acquisition of control knowledge by storing solved problems and reusing them in similar situations.

We describe a hybrid case-based reasoning system supporting process planning for machining workpieces. It integrates specialized domain dependent reasoners, a feature-based CAD system and domain independent planning. The overall architecture is build on top of CAPlan, a partial-order nonlinear planner. To use episodic problem solving knowledge for both optimizing plan execution costs and minimizing search the case-based control component CAPlan/CbC has been realized that allows incremental acquisition and reuse of strategical problem solving experience by storing solved problems as cases and reusing them in similar situations. For effective retrieval of cases CAPlan/CbC combines domain-independent and domain-specific retrieval mechanisms that are based on the hierarchical domain model and problem representation.

The feature interaction problem in telecommunications systems increasingly obstructsthe evolution of such systems. We develop formal detection criteria which render anecessary (but less than sufficient) condition for feature interactions. It can be checkedmechanically and points out all potentially critical spots. These have to be analyzedmanually. The resulting resolution decisions are incorporated formally. Some prototypetool support is already available. A prerequisite for formal criteria is a formal definitionof the problem. Since the notions of feature and feature interaction are often used in arather fuzzy way, we attempt a formal definition first and discuss which aspects can beincluded in a formalization (and therefore in a detection method). This paper describeson-going work.

We present two techniques for reasoning from cases to solve classification tasks: Induction and case-based reasoning. We contrast the two technologies (that are often confused) and show how they complement each other. Based on this, we describe how they are integrated in one single platform for reasoning from cases: The Inreca system.

Contrary to symbolic learning approaches, which represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case- based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and case-based methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

Collecting Experience on the Systematic Development of CBR Applications using the INRECA Methodology
(1999)

This paper presents an overview of the INRECA methodology for building and maintaining CBR applications. This methodology supports the collection and reuse of experience on the systematic development of CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development experience is documented using software process models and stored in different levels of generality in a three-layered experience base. Up to now, experience from 9 industrial projects enacted by all INRECA II partners has been collected.

Automata-Theoretic vs. Property-Oriented Approaches for the Detection of Feature Interactions in IN
(1999)

The feature interaction problem in Intelligent Networks obstructs more and morethe rapid introduction of new features. Detecting such feature interactions turns out to be a big problem. The size of the systems and the sheer computational com-plexity prevents the system developer from checking manually any feature against any other feature. We give an overview on current (verification) approaches and categorize them into property-oriented and automata-theoretic approaches. A comparisonturns out that each approach complements the other in a certain sense. We proposeto apply both approaches together in order to solve the feature interaction problem.

Planning means constructing a course of actions to achieve a specified set of goals when starting from an initial situation. For example, determining a sequence of actions (a plan) for transporting goods from an initial location to some destination is a typical planning problem in the transportation domain. Many planning problems are of practical interest.

MOLTKE is a research project dealing with a complex technical application. After describing the domain of CNCmachining centers and the applied KA methods, we summarize the concrete KA problems which we have to handle. Then we describe a KA mechanism which supports an engineer in developing a diagnosis system. In chapter 6 weintroduce learning techniques operating on diagnostic cases and domain knowledge for improving the diagnostic procedure of MOLTKE. In the last section of this chapter we outline some essential aspects of organizationalknowledge which is heavily applied by engineers for analysing such technical systems (Qualitative Engineering). Finally we give a short overview of the actual state of realization and our future plans.

Most automated theorem provers suffer from the problem that theycan produce proofs only in formalisms difficult to understand even forexperienced mathematicians. Efforts have been made to transformsuch machine generated proofs into natural deduction (ND) proofs.Although the single steps are now easy to understand, the entire proofis usually at a low level of abstraction, containing too many tedioussteps. Therefore, it is not adequate as input to natural language gen-eration systems.To overcome these problems, we propose a new intermediate rep-resentation, called ND style proofs at the assertion level . After illus-trating the notion intuitively, we show that the assertion level stepscan be justified by domain-specific inference rules, and that these rulescan be represented compactly in a tree structure. Finally, we describea procedure which substantially shortens ND proofs by abstractingthem to the assertion level, and report our experience with furthertransformation into natural language.

In this paper we show that distributing the theorem proving task to several experts is a promising idea. We describe the team work method which allows the experts to compete for a while and then to cooperate. In the cooperation phase the best results derived in the competition phase are collected and the less important results are forgotten. We describe some useful experts and explain in detail how they work together. We establish fairness criteria and so prove the distributed system to be both, complete and correct. We have implementedour system and show by non-trivial examples that drastical time speed-ups are possible for a cooperating team of experts compared to the time needed by the best expert in the team.

Constructing an analogy between a known and already proven theorem(the base case) and another yet to be proven theorem (the target case) oftenamounts to finding the appropriate representation at which the base and thetarget are similar. This is a well-known fact in mathematics, and it was cor-roborated by our empirical study of a mathematical textbook, which showedthat a reformulation of the representation of a theorem and its proof is in-deed more often than not a necessary prerequisite for an analogical inference.Thus machine supported reformulation becomes an important component ofautomated analogy-driven theorem proving too.The reformulation component proposed in this paper is embedded into aproof plan methodology based on methods and meta-methods, where the latterare used to change and appropriately adapt the methods. A theorem and itsproof are both represented as a method and then reformulated by the set ofmetamethods presented in this paper.Our approach supports analogy-driven theorem proving at various levels ofabstraction and in principle makes it independent of the given and often acci-dental representation of the given theorems. Different methods can representfully instantiated proofs, subproofs, or general proof methods, and hence ourapproach also supports these three kinds of analogy respectively. By attachingappropriate justifications to meta-methods the analogical inference can oftenbe justified in the sense of Russell.This paper presents a model of analogy-driven proof plan construction andfocuses on empirically extracted meta-methods. It classifies and formally de-scribes these meta-methods and shows how to use them for an appropriatereformulation in automated analogy-driven theorem proving.

Following Buchberger's approach to computing a Gröbner basis of a poly-nomial ideal in polynomial rings, a completion procedure for finitely generatedright ideals in Z[H] is given, where H is an ordered monoid presented by a finite,convergent semi - Thue system (Sigma; T ). Taking a finite set F ' Z[H] we get a(possibly infinite) basis of the right ideal generated by F , such that using thisbasis we have unique normal forms for all p 2 Z[H] (especially the normal formis 0 in case p is an element of the right ideal generated by F ). As the orderingand multiplication on H need not be compatible, reduction has to be definedcarefully in order to make it Noetherian. Further we no longer have p Delta x ! p 0for p 2 Z[H]; x 2 H. Similar to Buchberger's s - polynomials, confluence criteriaare developed and a completion procedure is given. In case T = ; or (Sigma; T ) is aconvergent, 2 - monadic presentation of a group providing inverses of length 1 forthe generators or (Sigma; T ) is a convergent presentation of a commutative monoid ,termination can be shown. So in this cases finitely generated right ideals admitfinite Gröbner bases. The connection to the subgroup problem is discussed.

The hallmark of traditional Artificial Intelligence (AI) research is the symbolic representation and processing of knowledge. This is in sharp contrast to many forms of human reasoning, which to an extraordinary extent, rely on cases and (typical) examples. Although these examples could themselves be encoded into logic, this raises the problem of restricting the corresponding model classes to include only the intended models.There are, however, more compelling reasons to argue for a hybrid representa-tion based on assertions as well as examples. The problems of adequacy, availability of information, compactness of representation, processing complexity, and last but not least, results from the psychology of human reasoning, all point to the same conclusion: Common sense reasoning requires different knowledge sources and hybrid reasoning principles that combine symbolic as well as semantic-based inference. In this paper we address the problem of integrating semantic representations of examples into automateddeduction systems. The main contribution is a formal framework for combining sentential with direct representations. The framework consists of a hybrid knowledge base, made up of logical formulae on the one hand and direct representations of examples on the other, and of a hybrid reasoning method based on the resolution calculus. The resulting hybrid resolution calculus is shown to be sound and complete.

This case study examines in detail the theorems and proofs that are shownby analogy in a mathematical textbook on semigroups and automata, thatis widely used as an undergraduate textbook in theoretical computer scienceat German universities (P. Deussen, Halbgruppen und Automaten, Springer1971). The study shows the important role of restructuring a proof for findinganalogous subproofs, and of reformulating a proof for the analogical trans-formation. It also emphasizes the importance of the relevant assumptions ofa known proof, i.e., of those assumptions actually used in the proof. In thisdocument we show the theorems, the proof structure, the subproblems andthe proofs of subproblems and their analogues with the purpose to providean empirical test set of cases for automated analogy-driven theorem proving.Theorems and their proofs are given in natural language augmented by theusual set of mathematical symbols in the studied textbook. As a first step weencode the theorems in logic and show the actual restructuring. Secondly, wecode the proofs in a Natural Deduction calculus such that a formal analysisbecomes possible and mention reformulations that are necessary in order toreveal the analogy.

We provide an overview of UNICOM, an inductive theorem prover for equational logic which isbased on refined rewriting and completion techniques. The architecture of the system as well as itsfunctionality are described. Moreover, an insight into the most important aspects of the internalproof process is provided. This knowledge about how the central inductive proof componentof the system essentially works is crucial for human users who want to solve non-trivial prooftasks with UNICOM and thoroughly analyse potential failures. The presentation is focussedon practical aspects of understanding and using UNICOM. A brief but complete description ofthe command interface, an installation guide, an example session, a detailed extended exampleillustrating various special features and a collection of successfully handled examples are alsoincluded.

While most approaches to similarity assessment are oblivious of knowledge and goals, there is ample evidence that these elements of problem solving play an important role in similarity judgements. This paper is concerned with an approach for integrating assessment of similarity into a framework of problem solving that embodies central notions of problem solving like goals, knowledge and learning.

To prove difficult theorems in a mathematical field requires substantial know-ledge of that field. In this thesis a frame-based knowledge representation formal-ism including higher-order sorted logic is presented, which supports a conceptualrepresentation and to a large extent guarantees the consistency of the built-upknowledge bases. In order to operationalize this knowledge, for instance, in anautomated theorem proving system, a class of sound morphisms from higher-orderinto first-order logic is given, in addition a sound and complete translation ispresented. The translations are bijective and hence compatible with a later proofpresentation.In order to prove certain theorems the comprehension axioms are necessary,(but difficult to handle in an automated system); such theorems are called trulyhigher-order. Many apparently higher-order theorems (i.e. theorems that arestated in higher-order syntax) however are essentially first-order in the sense thatthey can be proved without the comprehension axioms: for proving these theoremsthe translation technique as presented in this thesis is well-suited.

We transform a user-friendly formulation of aproblem to a machine-friendly one exploiting the variabilityof first-order logic to express facts. The usefulness of tacticsto improve the presentation is shown with several examples.In particular it is shown how tactical and resolution theoremproving can be combined.

There are well known examples of monoids in literature which do not admit a finite andcanonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi-trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditionalterm rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems wegive finite and canonical presentations of the examples mentioned above. Furthermore weshow, that each finitely generated monoid with decidable word problem is embeddable in amonoid which has a finite canonical conditional presentation.

Typical examples, that is, examples that are representative for a particular situationor concept, play an important role in human knowledge representation and reasoning.In real life situations more often than not, instead of a lengthy abstract characteriza-tion, a typical example is used to describe the situation. This well-known observationhas been the motivation for various investigations in experimental psychology, whichalso motivate our formal characterization of typical examples, based on a partial orderfor their typicality. Reasoning by typical examples is then developed as a special caseof analogical reasoning using the semantic information contained in the correspondingconcept structures. We derive new inference rules by replacing the explicit informa-tion about connections and similarity, which are normally used to formalize analogicalinference rules, by information about the relationship to typical examples. Using theseinference rules analogical reasoning proceeds by checking a related typical example,this is a form of reasoning based on semantic information from cases.

This paper concerns a knowledge structure called method , within a compu-tational model for human oriented deduction. With human oriented theoremproving cast as an interleaving process of planning and verification, the body ofall methods reflects the reasoning repertoire of a reasoning system. While weadopt the general structure of methods introduced by Alan Bundy, we make anessential advancement in that we strictly separate the declarative knowledgefrom the procedural knowledge. This is achieved by postulating some stand-ard types of knowledge we have identified, such as inference rules, assertions,and proof schemata, together with corresponding knowledge interpreters. Ourapproach in effect changes the way deductive knowledge is encoded: A newcompound declarative knowledge structure, the proof schema, takes the placeof complicated procedures for modeling specific proof strategies. This change ofparadigm not only leads to representations easier to understand, it also enablesus modeling the even more important activity of formulating meta-methods,that is, operators that adapt existing methods to suit novel situations. In thispaper, we first introduce briefly the general framework for describing methods.Then we turn to several types of knowledge with their interpreters. Finally,we briefly illustrate some meta-methods.

We present a framework for the integration of the Knuth-Bendix completion algorithm with narrowing methods, compiled rewrite rules, and a heuristic difference reduction mechanism for paramodulation. The possibility of embedding theory unification algorithms into this framework is outlined. Results are presented and discussed for several examples of equality reasoning problems in the context of an actual implementation of an automated theorem proving system (the Mkrp-system) and a fast C implementation of the completion procedure. The Mkrp-system is based on the clause graph resolution procedure. The thesis shows the indispensibility of the constraining effects of completion and rewriting for equality reasoning in general and quantifies the amount of speed-up caused by various enhancements of the basic method. The simplicity of the superposition inference rule allows to construct an abstract machine for completion, which is presented together with computation times for a concrete implementation.

This report presents the main ideas underlyingtheOmegaGamma mkrp-system, an environmentfor the development of mathematical proofs. The motivation for the development ofthis system comes from our extensive experience with traditional first-order theoremprovers and aims to overcome some of their shortcomings. After comparing the benefitsand drawbacks of existing systems, we propose a system architecture that combinesthe positive features of different types of theorem-proving systems, most notably theadvantages of human-oriented systems based on methods (our version of tactics) andthe deductive strength of traditional automated theorem provers.In OmegaGamma mkrp a user first states a problem to be solved in a typed and sorted higher-order language (called POST ) and then applies natural deduction inference rules inorder to prove it. He can also insert a mathematical fact from an integrated data-base into the current partial proof, he can apply a domain-specific problem-solvingmethod, or he can call an integrated automated theorem prover to solve a subprob-lem. The user can also pass the control to a planning component that supports andpartially automates his long-range planning of a proof. Toward the important goal ofuser-friendliness, machine-generated proofs are transformed in several steps into muchshorter, better-structured proofs that are finally translated into natural language.This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2, D3)

An important property and also a crucial point ofa term rewriting system is its termination. Transformation or-derings, developed by Bellegarde & Lescanne strongly based on awork of Bachmair & Dershowitz, represent a general technique forextending orderings. The main characteristics of this method aretwo rewriting relations, one for transforming terms and the otherfor ensuring the well-foundedness of the ordering. The centralproblem of this approach concerns the choice of the two relationssuch that the termination of a given term rewriting system can beproved. In this communication, we present a heuristic-based al-gorithm that partially solves this problem. Furthermore, we showhow to simulate well-known orderings on strings by transformationorderings.

Unification in an Extensional Lambda Calculus with Ordered Function Sorts and Constant Overloading
(1999)

We develop an order-sorted higher-order calculus suitable forautomatic theorem proving applications by extending the extensional simplytyped lambda calculus with a higher-order ordered sort concept and constantoverloading. Huet's well-known techniques for unifying simply typed lambdaterms are generalized to arrive at a complete transformation-based unificationalgorithm for this sorted calculus. Consideration of an order-sorted logicwith functional base sorts and arbitrary term declarations was originallyproposed by the second author in a 1991 paper; we give here a correctedcalculus which supports constant rather than arbitrary term declarations, aswell as a corrected unification algorithm, and prove in this setting resultscorresponding to those claimed there.

An important research problem is the incorporation of "declarative" knowledge into an automated theorem prover that can be utilized in the search for a proof. An interesting pro-posal in this direction is Alan Bundy's approach of using explicit proof plans that encapsulatethe general form of a proof and is instantiated into a particular proof for the case at hand. Wegive some examples that show how a "declarative" highlevel description of a proof can be usedto find proofs of apparently "similiar" theorems by analogy. This "analogical" information isused to select the appropriate axioms from the database so that the theorem can be proved.This information is also used to adjust some options of a resolution theorem prover. In orderto get a powerful tool it is necessary to develop an epistemologically appropriate language todescribe proofs, for which a large set of examples should be used as a testbed. We presentsome ideas in this direction.

This report presents a methodology to guide equational reasoningin a goal directed way. Suggested by rippling methods developed inthe field of inductive theorem proving we use attributes of terms andheuristics to determine bridge lemmas, i.e. lemmas which have tobe used during the proof of the theorem. Once we have found sucha bridge lemma we use the techniques of difference unification andrippling to enable its use.

This paper develops a sound and complete transformation-based algorithm forunification in an extensional order-sorted combinatory logic supporting constantoverloading and a higher-order sort concept. Appropriate notions of order-sortedweak equality and extensionality - reflecting order-sorted fij-equality in thecorresponding lambda calculus given by Johann and Kohlhase - are defined, andthe typed combinator-based higher-order unification techniques of Dougherty aremodified to accommodate unification with respect to the theory they generate. Thealgorithm presented here can thus be viewed as a combinatory logic counterpartto that of Johann and Kohlhase, as well as a refinement of that of Dougherty, andprovides evidence that combinatory logic is well-suited to serve as a framework forincorporating order-sorted higher-order reasoning into deduction systems aimingto capitalize on both the expressiveness of extensional higher-order logic and theefficiency of order-sorted calculi.

We consider the problem of verifying confluence and termination of conditionalterm rewriting systems (TRSs). For unconditional TRSs the critical pair lemmaholds which enables a finite test for confluence of (finite) terminating systems.And for ensuring termination of unconditional TRSs a couple of methods forconstructing appropiate well-founded term orderings are known. If however ter-mination is not guaranteed then proving confluence is much more difficult. Re-cently we have obtained some interesting results for unconditional TRSs whichprovide sufficient criteria for termination plus confluence in terms of restrictedtermination and confluence properties. In particular, we have shown that anyinnermost terminating and locally confluent overlay system is complete, i.e. ter-minating and confluent. Here we generalize our approach to the conditional caseand show how to solve the additional complications due to the presence of con-ditions in the rules. Our main result can be stated as follows: Any conditionalTRS which is an innermost terminating semantical overlay system such that all(conditional) critical pairs are joinable is complete.

We will answer a question posed in [DJK91], and will show that Huet's completion algorithm [Hu81] becomes incomplete, i.e. it may generate a term rewriting system that is not confluent, if it is modified in a way that the reduction ordering used for completion can be changed during completion provided that the new ordering is compatible with the actual rules. In particular, we will show that this problem may not only arise if the modified completion algorithm does not terminate: Even if the algorithm terminates without failure, the generated finite noetherian term rewriting system may be non-confluent. Most existing implementations of the Knuth-Bendix algorithm provide the user with help in choosing a reduction ordering: If an unorientable equation is encountered, then the user has many options, especially, the one to orient the equation manually. The integration of this feature is based on the widespread assumption that, if equations are oriented by hand during completion and the completion process terminates with success, then the generated finite system is a maybe non terminating but locally confluent system (see e.g. [KZ89]). Our examples will show that this assumption is not true.

Even though it is not very often admitted, partial functions do play asignificant role in many practical applications of deduction systems. Kleenehas already given a semantic account of partial functions using three-valuedlogic decades ago, but there has not been a satisfactory mechanization. Recentyears have seen a thorough investigation of the framework of many-valuedtruth-functional logics. However, strong Kleene logic, where quantificationis restricted and therefore not truth-functional, does not fit the frameworkdirectly. We solve this problem by applying recent methods from sorted logics.This paper presents a resolution calculus that combines the proper treatmentof partial functions with the efficiency of sorted calculi.

The team work method is a concept for distributing automated theoremprovers and so to activate several experts to work on a given problem. We haveimplemented this for pure equational logic using the unfailing KnuthADBendixcompletion procedure as basic prover. In this paper we present three classes ofexperts working in a goal oriented fashion. In general, goal oriented experts perADform their job "unfair" and so are often unable to solve a given problem alone.However, as a team member in the team work method they perform highly effiADcient, even in comparison with such respected provers as Otter 3.0 or REVEAL,as we demonstrate by examples, some of which can only be proved using teamwork.The reason for these achievements results from the fact that the team workmethod forces the experts to compete for a while and then to cooperate by exADchanging their best results. This allows one to collect "good" intermediate resultsand to forget "useless" ones. Completion based proof methods are frequently reADgarded to have the disadvantage of being not goal oriented. We believe that ourapproach overcomes this disadvantage to a large extend.

In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

In 1978, Klop demonstrated that a rewrite system constructed by adding the untyped lambda calculus, which has the Church-Rosser property, to a Church-Rosser first-order algebraic rewrite system may not be Church-Rosser. In contrast, Breazu-Tannen recently showed that argumenting any Church-Rosser first-order algebraic rewrite system with the simply-typed lambda calculus results in a Church-Rosser rewrite system. In addition, Breazu-Tannen and Gallier have shown that the second-order polymorphic lambda calculus can be added to such rewrite systems without compromising the Church-Rosser property (for terms which can be provably typed). There are other systems for which a Church-Rosser result would be desirable, among them being X^t+SP+FIX, the simply-typed lambda calculus extended with surjective pairing and fixed points. This paper will show that Klop's untyped counterexample can be lifted to a typed system to demonstrate that X^t+SP+FIX is not Church-Rosser.

Over the past thirty years there have been significant achievements in the field of auto-mated theorem proving with respect to the reasoning power of the inference engines.Although some effort has also been spent to facilitate more user friendliness of the de-duction systems, most of them failed to benefit from more recent developments in therelated fields of artificial intelligence (AI), such as natural language generation and usermodeling. In particular, no model is available which accounts both for human deductiveactivities and for human proof presentation. In this thesis, a reconstructive architecture issuggested which substantially abstracts, reorganizes and finally translates machine-foundproofs into natural language. Both the procedures and the intermediate representationsof our architecture find their basis in computational models for informal mathematicalreasoning and for proof presentation. User modeling is not incorporated into the currenttheory, although we plan to do so later.

In this article we formally describe a declarative approach for encoding plan operatorsin proof planning, the so-called methods. The notion of method evolves from the much studiedconcept tactic and was first used by Bundy. While significant deductive power has been achievedwith the planning approach towards automated deduction, the procedural character of the tacticpart of methods, however, hinders mechanical modification. Although the strength of a proofplanning system largely depends on powerful general procedures which solve a large class ofproblems, mechanical or even automated modification of methods is nevertheless necessary forat least two reasons. Firstly methods designed for a specific type of problem will never begeneral enough. For instance, it is very difficult to encode a general method which solves allproblems a human mathematician might intuitively consider as a case of homomorphy. Secondlythe cognitive ability of adapting existing methods to suit novel situations is a fundamentalpart of human mathematical competence. We believe it is extremely valuable to accountcomputationally for this kind of reasoning.The main part of this article is devoted to a declarative language for encoding methods,composed of a tactic and a specification. The major feature of our approach is that the tacticpart of a method is split into a declarative and a procedural part in order to enable a tractableadaption of methods. The applicability of a method in a planning situation is formulatedin the specification, essentially consisting of an object level formula schema and a meta-levelformula of a declarative constraint language. After setting up our general framework, wemainly concentrate on this constraint language. Furthermore we illustrate how our methodscan be used in a Strips-like planning framework. Finally we briefly illustrate the mechanicalmodification of declaratively encoded methods by so-called meta-methods.

This paper presents a new way to use planning in automated theorem provingby means of distribution. To overcome the problem that often subtasks fora proof problem can not be detected a priori (which prevents the use of theknown planning and distribution techniques) we use a team of experts that workindependently with different heuristics on the problem. After a certain amount oftime referees judge their results using the impact of the results on the behaviourof the expert and a supervisor combines the selected results to a new startingpoint.This supervisor also selects the experts that can work on the problem inthe next round. This selection is a reactive planning task. We outline whichinformation the supervisor can use to fulfill this task and how this informationis processed to result in a plan or to revise a plan. We also show that the useof planning for the assignment of experts to the team allows the system to solvemany different examples in an acceptable time with the same start configurationand without any consultation of the user.Plans are always subject to changeShin'a'in proverb

Several activities around the world aim at integrating object-oriented data models with relational ones in order to improve database management systems. As a first result of these activities, object-relational database management systems (ORDBMS) are already commercially available and, simultaneously, are subject to several research projects. This (position) paper reports on our activities in exploiting object-relational database technology for establishing repository manager functionality supporting software engineering (SE) processes. We argue that some of the key features of ORDBMS can directly be exploited to fulfill many of the needs of SE processes. Thus, ORDBMS, as we think, are much better suited to support SE applications than any others. Nevertheless, additional functionality, e. g., providing adequate version management, is required in order to gain a completely satisfying SE repository. In order to remain flexible, we have developed a generative approach for providing this additional functionality. It remains to be seen whether this approach, in turn, can effectively exploit ORDBMS features. This paper, therefore, wants to show that ORDBMS can substantially contribute to both establishing and running SE repositories.

The background of this paper is the area of case-based reasoning. This is a reasoning technique where one tries to use the solution of some problem which has been solved earlier in order to obta in a solution of a given problem. As example of types of problems where this kind of reasoning occurs very often is the diagnosis of diseases or faults in technical systems. In abstract terms this reduces to a classification task. A difficulty arises when one has not just one solved problem but when there are very many. These are called "cases" and they are stored in the case-base. Then one has to select an appropriate case which means to find one which is "similar" to the actual problem. The notion of similarity has raised much interest in this context. We will first introduce a mathematical framework and define some basic concepts. Then we will study some abstract phenomena in this area and finally present some methods developed and realized in a system at the University of Kaiserslautern.

The introduction of sorts to first-order automated deduction has broughtgreater conciseness of representation and a considerable gain in efficiency byreducing the search space. It is therefore promising to treat sorts in higherorder theorem proving as well.In this paper we present a generalization of Huet's Constrained Resolutionto an order-sorted type theory SigmaT with term declarations. This system buildscertain taxonomic axioms into the unification and conducts reasoning withthem in a controlled way. We make this notion precise by giving a relativizationoperator that totally and faithfully encodes SigmaT into simple type theory.

In this report we present a case study of employing goal-oriented heuristics whenproving equational theorems with the (unfailing) Knut-Bendix completion proce-dure. The theorems are taken from the domain of lattice ordered groups. It will bedemonstrated that goal-oriented (heuristic) criteria for selecting the next critical paircan in many cases significantly reduce the search effort and hence increase per-formance of the proving system considerably. The heuristic, goalADoriented criteriaare on the one hand based on so-called "measures" measuring occurrences andnesting of function symbols, and on the other hand based on matching subterms.We also deal with the property of goal-oriented heuristics to be particularly helpfulin certain stages of a proof. This fact can be addressed by using them in a frame-work for distributed (equational) theorem proving, namely the "teamwork-method".

A straightforward formulation of a mathematical problem is mostly not ad-equate for resolution theorem proving. We present a method to optimize suchformulations by exploiting the variability of first-order logic. The optimizingtransformation is described as logic morphisms, whose operationalizations aretactics. The different behaviour of a resolution theorem prover for the sourceand target formulations is demonstrated by several examples. It is shown howtactical and resolution-style theorem proving can be combined.

We show how to buildup mathematical knowledge bases usingframes. We distinguish three differenttypes of knowledge: axioms, definitions(for introducing concepts like "set" or"group") and theorems (for relating theconcepts). The consistency of such know-ledge bases cannot be proved in gen-eral, but we can restrict the possibilit-ies where inconsistencies may be impor-ted to very few cases, namely to the oc-currence of axioms. Definitions and the-orems should not lead to any inconsisten-cies because definitions form conservativeextensions and theorems are proved to beconsequences.

In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.

Extending existing calculi by sorts is astrong means for improving the deductive power offirst-order theorem provers. Since many mathemat-ical facts can be more easily expressed in higher-orderlogic - aside the greater power of higher-order logicin principle - , it is desirable to transfer the advant-ages of sorts in the first-order case to the higher-ordercase. One possible method for automating higher-order logic is the translation of problem formulationsinto first-order logic and the usage of first-order the-orem provers. For a certain class of problems thismethod can compete with proving theorems directlyin higher-order logic as for instance with the TPStheorem prover of Peter Andrews or with the Nuprlproof development environment of Robert Constable.There are translations from unsorted higher-order lo-gic based on Church's simple theory of types intomany-sorted first-order logic, which are sound andcomplete with respect to a Henkin-style general mod-els semantics. In this paper we extend correspond-ing translations to translations of order-sorted higher-order logic into order-sorted first-order logic, thus weare able to utilize corresponding first-order theoremprover for proving higher-order theorems. We do notuse any (lambda)-expressions, therefore we have to add so-called comprehension axioms, which a priori makethe procedure well-suited only for essentially first-order theorems. However, in practical applicationsof mathematics many theorems are essentially first-order and as it seems to be the case, the comprehen-sion axioms can be mastered too.

We tested the GYROSTAR ENV-05S. This device is a sensor for angular velocity. There- fore the orientation must be calculated by integration of the angular velocity over time. The devices output is a voltage proportional to the angular velocity and relative to a reference. The test where done to find out under which conditions it is possible to use this device for estimation of orientation.

A map for an autonomous mobile robot (AMR) in an indoor environment for the purpose ofcontinuous position and orientation estimation is discussed. Unlike many other approaches, this map is not based on geometrical primitives like lines and polygons. An algorithm is shown , where the sensordata of a laser range finder can be used to establish this map without a geometrical interpretation of the data. This is done by converting single laser radar scans to statistical representations of the environ-ment, so that a crosscorrelation of an actu al converted scan and this representative results into the actual position and orientation in a global coordinate system. The map itsel f is build of representative scansfor the positions where the AMR has been, so that it is able to find its position and orientation by c omparing the actual scan with a scan stored in the map.

One of the problems of autonomous mobile systems is the continuous tracking of position and orientation. In most cases, this problem is solved by dead reckoning, based on measurement of wheel rotations or step counts and step width. Unfortunately dead reckoning leads to accumulation of drift errors and is very sensitive against slippery. In this paper an algorithm for tracking position and orientation is presented being nearly independent from odometry and its problems with slippery. To achieve this results, a rotating range-finder is used, delivering scans of the environmental structure. The properties of this structure are used to match the scans from different locations in order to find their translational and rotational displacement. For this purpose derivatives of range-finder scans are calculated which can be used to find position and orientation by crosscorrelation.

Dynamic Lambda Calculus
(1999)

The goal of this paper is to lay a logical foundation for discourse theories by providing analgebraic foundation of compositional formalisms for discourse semantics as an analogon tothe simply typed (lambda)-calculus. Just as that can be specialized to type theory by simply providinga special type for truth values and postulating the quantifiers and connectives as constantswith fixed semantics, the proposed dynamic (lambda)-calculus DLC can be specialized to (lambda)-DRT byessentially the same measures, yielding a much more principled and modular treatment of(lambda)-DRT than before; DLC is also expected to eventually provide a conceptually simple basisfor studying higher-order unification for compositional discourse theories.Over the past few years, there have been a series of attempts [Zee89, GS90, EK95, Mus96,KKP96, Kus96] to combine the Montagovian type theoretic framework [Mon74] with dynamicapproaches, such as DRT [Kam81]. The motivation for these developments is to obtain a generallogical framework for discourse semantics that combines compositionality and dynamic binding.Let us look at an example of compositional semantics construction in (lambda)-DRT which is one ofthe above formalisms [KKP96, Kus96]. By the use of fi-reduction we arrive at a first-order DRTrepresentation of the sentence A i man sleeps. (i denoting an index for anaphoric binding.)

Higher-Order Tableaux
(1999)

Even though higher-order calculi for automated theorem prov-ing are rather old, tableau calculi have not been investigated yet. Thispaper presents two free variable tableau calculi for higher-order logicthat use higher-order unification as the key inference procedure. Thesecalculi differ in the treatment of the substitutional properties of equival-ences. The first calculus is equivalent in deductive power to the machine-oriented higher-order refutation calculi known from the literature, whereasthe second is complete with respect to Henkin's general models.

Many mathematical proofs are hard to generate forhumans and even harder for automated theoremprovers. Classical techniques of automated theoremproving involve the application of basic rules, of built-in special procedures, or of tactics. Melis (Melis 1993)introduced a new method for analogical reasoning inautomated theorem proving. In this paper we showhow the derivational analogy replay method is relatedand extended to encompass analogy-driven proof planconstruction. The method is evaluated by showing theproof plan generation of the Pumping Lemma for con-text free languages derived by analogy with the proofplan of the Pumping Lemma for regular languages.This is an impressive evaluation test for the analogicalreasoning method applied to automated theorem prov-ing, as the automated proof of this Pumping Lemmais beyond the capabilities of any of the current auto-mated theorem provers.

This paper addresses the decomposition of proofs as a means of constructingmethods in plan-based automated theorem proving. It shows also, howdecomposition can beneficially be applied in theorem proving by analogy.Decomposition is also useful for human-style proof presentation. We proposeseveral decomposition techniques that were found to be useful in automatedtheorem proving and give examples of their application.

This paper analyzes how mathematicians prove the-orems. The analysis is based upon several empiricalsources such as reports of mathematicians and math-ematical proofs by analogy. In order to combine thestrength of traditional automated theorem provers withhuman-like capabilities, the questions arise: Whichproblem solving strategies are appropriate? Which rep-resentations have to be employed? As a result of ouranalysis, the following reasoning strategies are recog-nized: proof planning with partially instantiated meth-ods, structuring of proofs, the transfer of subproofs andof reformulated subproofs. We discuss the represent-ation of a component of these reasoning strategies, aswell as its properties. We find some mechanisms neededfor theorem proving by analogy, that are not providedby previous approaches to analogy. This leads us to acomputational representation of new components andprocedures for automated theorem proving systems.

This paper shows how a new approach to theorem provingby analogy is applicable to real maths problems. This approach worksat the level of proof-plans and employs reformulation that goes beyondsymbol mapping. The Heine-Borel theorem is a widely known result inmathematics. It is usually stated in R 1 and similar versions are also truein R 2 , in topology, and metric spaces. Its analogical transfer was proposedas a challenge example and could not be solved by previous approachesto theorem proving by analogy. We use a proof-plan of the Heine-Boreltheorem in R 1 as a guide in automatically producing a proof-plan of theHeine-Borel theorem in R 2 by analogy-driven proof-plan construction.

This paper addresses a model of analogy-driven theorem proving that is more general and cognitively more adequate than previous approaches. The model works at the level ofproof-plans. More precisely, we consider analogy as a control strategy in proof planning that employs a source proof-plan to guide the construction of a proof-plan for the target problem. Our approach includes a reformulation of the source proof-plan. This is in accordance with the well known fact that constructing ananalogy in maths often amounts to first finding the appropriate representation which brings out the similarity of two problems, i.e., finding the right concepts and the right level of abstraction. Several well known theorems were processed by our analogy-driven proof-plan construction that could not be proven analogically by previous approaches.

This paper addresses analogy-driven auto-mated theorem proving that employs a sourceproof-plan to guide the search for a proof-planof the target problem. The approach presen-ted uses reformulations that go beyond symbolmappings and that incorporate frequently usedre-representations and abstractions. Severalrealistic math examples were successfully pro-cessed by our analogy-driven proof-plan con-struction. One challenge example, a Heine-Borel theorem, is discussed here. For this ex-ample the reformulaitons are shown step bystep and the modifying actions are demon-strated.

Analogy in CLAM
(1999)

CL A M is a proof planner, developed by the Dream group in Edinburgh,that mainly operates for inductive proofs. This paper addresses the questionhow an analogy model that I developed independently of CL A M can beapplied to CL A M and it presents analogy-driven proof plan construction as acontrol strategy of CL A M . This strategy is realized as a derivational analogythat includes the reformulation of proof plans. The analogical replay checkswhether the reformulated justifications of the source plan methods hold inthe target as a permission to transfer the method to the target plan. SinceCL A M has very efficient heuristic search strategies, the main purpose ofthe analogy is to suggest lemmas, to replay not commonly loaded methods,to suggest induction variables and induction terms, and to override controlrather than to construct a target proof plan that can be built by CL A Mitself more efficiently.

As global networks are being used by more and more people,they are becoming increasingly interesting for commercial appli-cations. The recent success and change in direction of the World-Wide Web is a clear indication for this. However, this success meta largely unprepared communications infrastructure. The Inter-net as an originally non-profit network did neither offer the secu-rity, nor the globally available accounting infrastructure byitself.These problems were addressed in the recent past, but in aseemingly ad-hoc manner. Several different accounting schemessensible for only certain types of commercial transactions havebeen developed, which either seem to neglect the problems ofscalability, or trade security for efficiency. Finally, some propos-als aim at achieving near perfect security at the expense of effi-ciency, thus rendering those systems to be of no practical use.In contrast, this paper presents a suitably configurable schemefor accounting in a general, widely distributed client/server envi-ronment. When developing the protocol presented in this paper,special attention has been paid to make this approach work wellin the future setting of high-bandwidth, high-latency internets.The developed protocol has been applied to a large-scale distrib-uted application, a WWW-based software development environ-ment.

In this paper, we compare the BERKOM globally ac-cessible services project (GLASS) with the well-knownWorld-Wide Web with respect to the ease of development,realization, and distribution of multimedia presentations.This comparison is based on the experiences we gainedwhen implementing a gateway between GLASS and theWorld-Wide Web. Since both systems are shown to haveobvious weaknesses, we are concluding this paper with apresentation of a better way to multimedia document en-gineering and distribution. This concept is based on awell-accepted approach to function-shipping in the Inter-net: the Java language, permitting for example a smoothintegration of GLASS92 MHEG objects and WWW HTMLpages within one common environment.

Distributed systems are an alternative to shared-memorymultiprocessors for the execution of parallel applications.PANDA is a runtime system which provides architecturalsupport for efficient parallel and distributed program-ming. PANDA supplies means for fast user-level threads,and for a transparent and coordinated sharing of objectsacross a homogeneous network. The paper motivates themajor architectural choices that guided our design. Theproblem of sharing data in a distributed environment isdiscussed, and the performance of appropriate mecha-nisms provided by the PANDA prototype implementation isassessed.

In this paper, a framework for globally distributed soft-ware development and management environments, whichwe call Booster is presented. Additionally, the first experi-ences with WebMake, an application developed to serve asan experimental platform for a software developmentenvironment based on the World Wide Web and theBooster framework is introduced. Booster encompasses thebasic building blocks and mechanisms necessary tosupport a truly cooperative distributed softwaredevelopment from the very beginning to the last steps in asoftware life cycle. It is thus a precursor of the GlobalSoftware Highway, in which providers and users can meetfor the development, management, exchange and usage ofall kind of software.

In order to reduce the elapsed time of a computation, a pop-ular approach is to decompose the program into a collection of largelyindependent subtasks which are executed in parallel. Unfortunately, it isoften observed that tightly-coupled parallel programs run considerablyslower than initially expected. In this paper, a framework for the anal-ysis of parallel programs and their potential speedup is presented. Twoparameters which strongly affect the scalability of parallelism are iden-tified, namely the grain of synchronization, and the degree to which thetarget hardware is available. It is shown that for certain classes of appli-cations speedup is inherently poor, even if the program runs under theidealized conditions of perfect load balance, unbounded communicationbandwidth and negligible communication and parallelization overhead.Upper bounds are derived for the speedup that can be obtained in threedifferent types of computations. An example illustrates the main find-ings.

AbstractOne main purpose for the use of formal description techniques (FDTs) is formal reasoningand verification. This requires a formal calculus and a suitable formal semantics of theFDT. In this paper, we discuss the basic verification requirements for Estelle, and howthey can be supported by existing calculi. This leads us to the redefinition of the stanADdard Estelle semantics using Lamport's temporal logic of actions and Dijkstra's predicatetransformers.

The increasing use of distributed computer systems leads to an increasingneed for distributed applications. Their development in various domains like of-fice automation or computer integrated manufacturing is not sufficiently sup-ported by current techniques. New software engineering concepts are needed inthe three areas 'languages', 'tools', and 'environments'. We believe that object-oriented techniques and graphics support are key approaches to major achieve-ments in all three areas. As a consequence, we developed a universal object-oriented graphical editor ODE as one of our basic tools (tool building tool).ODE is based on the object-oriented paradigm, with some important extensionslike built-in object relations. It has an extensible functional language which al-lows for customization of the editor. ODE was developed as part of DOCASE, asoftware production environment for distributed applications. The basic ideas ofDOCASE will be presented and the requirements for ODE will be pointed out.Then ODE will be described in detail, followed by a sample customization ofODE: the one for the DOCASE design language.

This paper presents a completely systematic design procedure for asynchronous controllers.The initial step is the construction of a signal transition graph (STG, an interpreted Petri net) ofthe dialog between data path and controller: a formal representation without reference to timeor internal states. To implement concurrently operating control structures, and also to reducedesign effort and circuit cost, this STG can be decomposed into overlapping subnets. A univer-sal initial solution is then obtained by algorithmically constructing a primitive flow table fromeach component net. This step links the procedure to classical asynchronous design, in particu-lar to its proven optimization methods, without restricting the set of solutions. In contrast toother approaches, there is no need to extend the original STG intuitively.

An interrupter for use in a daisy-chained VME bus interrupt system has beendesigned and implemented as an asynchronous sequential circuit. The concur-rency of the processes posed a design problem that was solved by means of asystematic design procedure that uses Petri nets for specifying system and in-terrupter behaviour, and for deriving a primitive flow table. Classical designand additional measures to cope with non-fundamental mode operation yieldeda coded state-machine representation. This was implemented on a GAL 22V10,chosen for its hazard-preventing structure and for rapid prototyping in studentlaboratories.

A growing share of all software development project work is being done by geographically distributed teams. To satisfy shorter product design cycles, expert team members for a development project may need to be r ecruited globally. Yet to avoid extensive travelling or r eplacement costs, distributed project work is preferred. Current-generation software engineering tools and ass ociated systems, processes, and methods were for the most part developed to be used within a single enterprise. Major innovations have lately been introduced to enable groupware applications on the Internet to support global collaboration. However, their deployment for distributed software projects requires further research. In partic ular, groupware methods must seamlessly be integrated with project and product management systems to make them attractive for industry. In this position paper we outline the major challenges concerning distributed (virtual) software projects. Based on our experiences with software process modeling and enactment environments, we then propose approaches to solve those challenges.

Coordinating distributed processes, especially engineering and software design processes, has been a research topic for some time now. Several approaches have been published that aim at coordinating large projects in general, and large software development processes in specific. However, most of these approaches focus on the technical part of the design process and omit management activities like planning and scheduling the project, or monitoring it during execution. In this paper, we focus on coordinating the management activities that accompany the technical software design process. We state the requirements for a Software Engineering Environm ent (SEE) accommodating management, and we describe a possible architecture for such an SEE.

This paper describes the architecture and concept of operation of a Framework for Adaptive Process Modeling and Execution (FAME). The research addresses the absence of robust methods for supporting the software process management life cycle. FAME employs a novel, model-based approach in providing automated support for different activities in the software development life cycle including project definition, process design, process analysis, process enactment, process execution status monitoring, and execution status-triggered process redesign. FAME applications extend beyond the software development domain to areas such as agile manufacturing, project management, logistics planning, and business process reengineering.

CORBA Lacks Venom
(1999)

Distributed objects bring to distributed computing such desirable properties of modularisation, abstraction and reuse easing the burden of development and maintenance by diminishing the gap between implementation and real-world objects. Distributed objects, however, need a consistent framework in which inter-object communication may take place. The Common Object Request Broker Architecture (CORBA) is a distributed object standard. CORBA's primary protocol is the Internet Interoperable Object Protocol limited to blocked synchronous remote procedure calls, over TCP/IP which is inappropriate for systems requiring timely guarantees.

Multi-User Dimensions (MUDs) [3], and their Object-Oriented versions (MOOs) [6], are geographically distributed, programmable client-server systems that support the cooperation of multiple users according to the virtual environment metaphor. In this metaphor, users are allowed to concurrently navigate in a set of "virtual" rooms. Rooms are interconnected through doors and may contain objects. Users are allowed to explore the contents of rooms, create and manipulate objects, and contact other users visiting the same room.

This paper investigates the suitability of the mobile agents approach to the problem of integrating a collection of local DBMS into a single heterogeneous large-scale distributed DBMS. The paper proposes a model of distributed transactions as a set of mobile agents and presents the relevant execution semantics. In addition, the mechanisms which are needed to guarantee the ACID properties in the considered environment are discussed.

Although work processes, like software processes, include a number of process aspects such as defined phases and deadlines, they are not plannable in detail. However, the advantages of today's process management, such as effective document routing and timeliness, can only be achieved with detailed models of work processes. This paper suggests a concept that uses detailed process models in conjunction with the possibility of defining the way a process model determines the work of individuals. Based on the WAM approach1, which allows workers to choose methods for their tasks according to the situation, we describe features to carry out planned parts of a process with workers always being able to start exceptional mechanisms. These mechanisms are based on the modelling paradigm of linked abstraction workflows (LAWs) that describe workflows at different levels of abstraction and classify refinements of tasks by the way lower tasks can be used.

Concept mapping is a simple and intuitive visual form of knowledge representation. Concept maps can be categorized as informal or formal, where the latter is characterized by implementing a semantics model constraining their components. Software engineering is a domain that has successfully adopted formal concept maps to visualize and specify complex systems. Automated tools have been implemented to support these models although their semantic constraints are hardcoded within the systems and hidden from users. This paper presents the Constraint Graphs and jKSImapper systems. Constraint Graphs is a flexible and powerful graphical system interface for specifying concept mapping notations. In addition, jKSImapper is a multi-user concept mapping editor for the Internet and the World Wide Web. Together, these systems aim to support user-definable formal concept mapping notations and distributed collaboration on the Internet and the World Wide Web.

In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.

We argue in this paper that sophisticated mi-croplanning techniques are required even formathematical proofs, in contrast to the beliefthat mathematical texts are only schematicand mechanical. We demonstrate why para-phrasing and aggregation significantly en-hance the flexibility and the coherence ofthe text produced. To this end, we adoptedthe Text Structure of Meteer as our basicrepresentation. The type checking mecha-nism of Text Structure allows us to achieveparaphrasing by building comparable combi-nations of linguistic resources. Specified interms of concepts in an uniform ontologicalstructure called the Upper Model, our se-mantic aggregation rules are more compactthan similar rules reported in the literature.

Extending the planADbased paradigm for auto-mated theorem proving, we developed in previ-ous work a declarative approach towards rep-resenting methods in a proof planning frame-work to support their mechanical modification.This paper presents a detailed study of a classof particular methods, embodying variations ofa mathematical technique called diagonaliza-tion. The purpose of this paper is mainly two-fold. First we demonstrate that typical math-ematical methods can be represented in ourframework in a natural way. Second we illus-trate our philosophy of proof planning: besidesplanning with a fixed repertoire of methods,metaADmethods create new methods by modify-ing existing ones. With the help of three differ-ent diagonalization problems we present an ex-ample trace protocol of the evolution of meth-ods: an initial method is extracted from a par-ticular successful proof. This initial method isthen reformulated for the subsequent problems,and more general methods can be obtained byabstracting existing methods. Finally we comeup with a fairly abstract method capable ofdealing with all the three problems, since it cap-tures the very key idea of diagonalization.

Most automated theorem provers suffer from the problem thatthey can produce proofs only in formalisms difficult to understand even forexperienced mathematicians. Effort has been made to reconstruct naturaldeduction (ND) proofs from such machine generated proofs. Although thesingle steps in ND proofs are easy to understand, the entire proof is usuallyat a low level of abstraction, containing too many tedious steps. To obtainproofs similar to those found in mathematical textbooks, we propose a newformalism, called ND style proofs at the assertion level , where derivationsare mostly justified by the application of a definition or a theorem. Aftercharacterizing the structure of compound ND proof segments allowing asser-tion level justification, we show that the same derivations can be achieved bydomain-specific inference rules as well. Furthermore, these rules can be rep-resented compactly in a tree structure. Finally, we describe a system calledPROVERB , which substantially shortens ND proofs by abstracting them tothe assertion level and then transforms them into natural language.

Planning Argumentative Texts
(1999)

This paper presents PROVERB a text planner forargumentative texts. PROVERB's main feature isthat it combines global hierarchical planning and un-planned organization of text with respect to local de-rivation relations in a complementary way. The formersplits the task of presenting a particular proof intosubtasks of presenting subproofs. The latter simulateshow the next intermediate conclusion to be presentedis chosen under the guidance of the local focus.

This paper outlines an implemented system called PROVERB that explains machine -found natural deduction proofs in natural language. Different from earlier works, we pursue a reconstructive approach. Based on the observation that natural deduction proofs are at a too low level of abstraction compared with proofs found in mathematical textbooks, we define first the concept of so-called assertion level inference rules. Derivations justified by these rules can intuitively be understood as the application of a definition or a theorem. Then an algorithm is introduced that abstracts machine-found ND proofs using the assertion level inference rules. Abstracted proofs are then verbalized into natural language by a presentation module. The most significant feature of the presentation module is that it combines standard hierarchical text planning and techniques that locally organize argumentative texts based on the derivation relation under the guidance of a focus mechanism. The behavior of the system is demonstrated with the help of a concrete example throughout the paper.

We describe a technique to make application programs fault tolerant. This techADnique is based on the concept of checkpointing from an active program to one ormore passive backup copies which serve as an abstraction of stable memory. Ifthe primary copy fails, one of the backup copies takes over and resumes processADing service requests. After each failure a new backup copy is created in order torestore the replication degree of the service. All mechanisms necessary to achieveand maintain fault tolerance can be added automatically to the code of a nonADfaulttolerant server, thus making fault tolerance completely transparent for the applicaADtion programmer.

This paper deals with the reference choices involved in thegeneration of argumentative text. A piece of argument-ative text such as the proof of a mathematical theoremconveys a sequence of derivations. For each step of de-rivation, the premises (previously conveyed intermediateresults) and the inference method (such as the applica-tion of a particular theorem or definition) must be madeclear. The appropriateness of these references cruciallyaffects the quality of the text produced.Although not restricted to nominal phrases, our refer-ence decisions are similar to those concerning nominalsubsequent referring expressions: they depend on theavailability of the object referred to within a context andare sensitive to its attentional hierarchy . In this paper,we show how the current context can be appropriatelysegmented into an attentional hierarchy by viewing textgeneration as a combination of planned and unplannedbehavior, and how the discourse theory of Reichmann canbe adapted to handle our special reference problem.

Most automated theorem provers suffer from the problemthat the resulting proofs are difficult to understand even for experiencedmathematicians. An effective communication between the system andits users, however, is crucial for many applications, such as in a mathematical assistant system. Therefore, efforts have been made to transformmachine generated proofs (e.g. resolution proofs) into natural deduction(ND) proofs. The state-of-the-art procedure of proof transformation fol-lows basically its completeness proof: the premises and the conclusionare decomposed into unit literals, then the theorem is derived by mul-tiple levels of proofs by contradiction. Indeterminism is introduced byheuristics that aim at the production of more elegant results. This inde-terministic character entails not only a complex search, but also leads tounpredictable results.In this paper we first study resolution proofs in terms of meaningful op-erations employed by human mathematicians, and thereby establish acorrespondence between resolution proofs and ND proofs at a more ab-stract level. Concretely, we show that if its unit initial clauses are CNFsof literal premises of a problem, a unit resolution corresponds directly toa well-structured ND proof segment that mathematicians intuitively un-derstand as the application of a definition or a theorem. The consequenceis twofold: First it enhances our intuitive understanding of resolutionproofs in terms of the vocabulary with which mathematicians talk aboutproofs. Second, the transformation process is now largely deterministicand therefore efficient. This determinism also guarantees the quality ofresulting proofs.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago, but there has not been a satisfact-ory mechanization. Recent years have seen a thorough investigation ofthe framework of many-valued truth-functional logics. However, strongKleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problemby applying recent methods from sorted logics. This paper presents atableau calculus that combines the proper treatment of partial functionswith the efficiency of sorted calculi.

The semantics of everyday language and the semanticsof its naive translation into classical first-order language consider-ably differ. An important discrepancy that is addressed in this paperis about the implicit assumption what exists. For instance, in thecase of universal quantification natural language uses restrictions andpresupposes that these restrictions are non-empty, while in classi-cal logic it is only assumed that the whole universe is non-empty.On the other hand, all constants mentioned in classical logic arepresupposed to exist, while it makes no problems to speak about hy-pothetical objects in everyday language. These problems have beendiscussed in philosophical logic and some adequate many-valuedlogics were developed to model these phenomena much better thanclassical first-order logic can do. An adequate calculus, however, hasnot yet been given. Recent years have seen a thorough investigationof the framework of many-valued truth-functional logics. UnfortuADnately, restricted quantifications are not truth-functional, hence theydo not fit the framework directly. We solve this problem by applyingrecent methods from sorted logics.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago. This approach allows rejectingcertain unwanted formulae as faulty, which the simpler two-valued onesaccept. We have developed resolution and tableau calculi for automatedtheorem proving that take the restrictions of the three-valued logic intoaccount, which however have the severe drawback that existing theo-rem provers cannot directly be adapted to the technique. Even recentlyimplemented calculi for many-valued logics are not well-suited, since inthose the quantification does not exclude the undefined element. In thiswork we show, that it is possible to enhance a two-valued theorem proverby a simple strategy so that it can be used to generate proofs for the the-orems of the three-valued setting. By this we are able to use an existingtheorem prover for a large fragment of the language.

Typical instances, that is, instances that are representative for a particular situ-ation or concept, play an important role in human knowledge representationand reasoning, in particular in analogical reasoning. This wellADknown obser-vation has been a motivation for investigations in cognitive psychology whichprovide a basis for our characterization of typical instances within conceptstructures and for a new inference rule for justified analogical reasoning withtypical instances. In a nutshell this paper suggests to augment the proposi-tional knowledge representation system by a non-propositional part consistingof concept structures which may have directly represented instances as ele-ments. The traditional reasoning system is extended by a rule for justifiedanalogical inference with typical instances using information extracted fromboth knowledge representation subsystems.

This paper addresses two modi of analogical reasoning. Thefirst modus is based on the explicit representation of the justificationfor the analogical inference. The second modus is based on the repre-sentation of typical instances by concept structures. The two kinds ofanalogical inferences rely on different forms of relevance knowledge thatcause non-monotonicity. While the uncertainty and non-monotonicity ofanalogical inferences is not questioned, a semantic characterization ofanalogical reasoning has not been given yet. We introduce a minimalmodel semantics for analogical inference with typical instances.