### Refine

#### Year of publication

#### Document Type

- Article (266) (remove)

#### Language

- English (266) (remove)

#### Keywords

- AG-RESY (32)
- PARO (24)
- SKALP (14)
- resonances (8)
- Wannier-Stark systems (7)
- lifetimes (7)
- HANDFLEX (6)
- Quantum mechanics (6)
- motion planning (5)
- quantum mechanics (5)

#### Faculty / Organisational entity

- Fachbereich Informatik (93)
- Fachbereich Physik (70)
- Fachbereich Mathematik (25)
- Fachbereich Biologie (23)
- Fachbereich Maschinenbau und Verfahrenstechnik (16)
- Fachbereich Sozialwissenschaften (16)
- Fachbereich Elektrotechnik und Informationstechnik (10)
- Fachbereich Bauingenieurwesen (6)
- Fachbereich Chemie (4)
- Fachbereich Wirtschaftswissenschaften (2)

The performance of napkins is nowadays improved substantially by embedding granules of a superabsorbent into the cellulose matrix. In this paper a continuous model for the liquid transport in such an Ultra Napkin is proposed. Its mean feature is a nonlinear diffusion equation strongly coupled with an ODE describing a reversible absorbtion process. An efficient numerical method based on a symmetrical time splitting and a finite difference scheme of ADI-predictor-corrector type has been developed to solve these equations in a three dimensional setting. Numerical results are presented that can be used to optimize the granule distribution.

For the online collision detection with a multi-arm robot a fast method for computing the so-called collision vector is presented. Manipulators and obstacles are modelled by sets of convex polytopes. Known distance algorithms serve as a foundation. To speed up the collision detection dynamic obstacles are approximated by geometric primitives and organized in hierarchies. On-line, the here introduced Dynamic Hierarchies are adjusted to the current arm configuration. A comparison with previous methods shows an increased acceleration of the computations.

In this paper we present an interpreter which allows to support the validation of conceptual models in early stages of the development. We compare hypermedia and expert system approaches to knowledge processing and show how an integrated approach eases the creation of expert systems. Our knowledge engineering tool CoMo-Kit allows a "smooth" transition from initial protocols via a semi-formal specification based on a typed hypertext up to an running expert system. The interpreter uses the intermediate hypertext representation for the interactive solution of problems. Thereby, tasks are distributed to agents via an local area network. This means that the specification of an expert system can directly be used to solve real world problems. If there exist formal (operational) specifications for subtasks then these are delegated to computers. Therefore, our approach allows to specify and validate distributed, cooperative systems where some subtasks are solved by humans and other subtasks are solved automatically by computers.

Four different initialization methods for parallel Branch-and-bound algorithms are described and compared with reference to several criteria. A formal analysis of their idle times and efficiency follows. It indicates that the efficiency of three methods depends on the branching factor of the search tree. Furthermore, the fourth method offers the best efficiency of the overall algorithm when a centralized OPEN set is used. Experimental results by a PRAM simulation support these statements.

In this paper we describe a framework for defining and operationalizing conceptual models of distributed knowledge-based systems which extends published approaches by the notion of ,agents" and multiple task decompositions. The main part deals with techniques underlying our distributed interpreter. We show how a client-server-architecture can be implemented which allows prototyping distributed knowledge-based systems. Further we describe our mechanism which manages task interactions and supports dependency-directed backtracking efficiently.

The introduction of sorts to first-order automated deduc-tion has brought greater conciseness of representation and a considerablegain in efficiency by reducing search spaces. This suggests that sort in-formation can be employed in higher-order theorem proving with similarresults. This paper develops a sorted (lambda)-calculus suitable for automatictheorem proving applications. It extends the simply typed (lambda)-calculus by ahigher-order sort concept that includes term declarations and functionalbase sorts. The term declaration mechanism studied here is powerfulenough to subsume subsorting as a derived notion and therefore gives ajustification for the special form of subsort inference. We present a set oftransformations for sorted (pre-) unification and prove the nondetermin-istic completeness of the algorithm induced by these transformations.

A method for efficiently handling associativity and commutativity (AC) in implementations of (equational) theorem provers without incorporating AC as an underlying theory will be presented. The key of substantial efficiency gains resides in a more suitable representation of permutation-equations (such as f(x,f(y,z))=f(y,f(z,x)) for instance). By representing these permutation-equations through permutations in the mathematical sense (i.e. bijective func- tions :{1,..,n} {1,..,n}), and by applying adapted and specialized inference rules, we can cope more appropriately with the fact that permutation-equations are playing a particular role. Moreover, a number of restrictions concerning application and generation of permuta- tion-equations can be found that would not be possible in this extent when treating permu- tation-equations just like any other equation. Thus, further improvements in efficiency can be achieved.

This paper presents fill algorithms for boundary-defined regions in raster graphics. The algorithms require only a constant size working memory. The methods presented are based on the so-called "seed fill" algorithms using the internal connectivity of the region with a given inner point. Basic methods as well as additional heuristics for speeding up the algorithm are described and verified. For different classes of regions, the time complexity of the algorithms is compared using empirical results.

We describe a hybrid case-based reasoning system supporting process planning for machining workpieces. It integrates specialized domain dependent reasoners, a feature-based CAD system and domain independent planning. The overall architecture is built on top of CAPlan, a partial-order nonlinear planner. To use episodic problem solving knowledge for both optimizing plan execution costs and minimizing search the case-based control component CAPlan/CbC has been implemented that allows incremental acquisition and reuse of strategical problem solving experience by storing solved problems as cases and reusing them in similar situations. For effective retrieval of cases CAPlan/CbC combines domain-independent and domain-specific retrieval mechanisms that are based on the hierarchical domain model and problem representation.

Structured domains are characterized by the fact that there is an intrinsic dependency between certain key elements in the domain. Considering these dependencies leads to better performance of the planning systems, and it is an important factor for determining the relevance of the cases stored in a case-base. However, testing for cases that meet these dependencies, decreases the performance of case-based planning, as other criterions need also to be consider for determining this relevance. We present a domain-independent architecture that explicitly represents these dependencies so that retrieving relevant cases is ensured without negatively affecting the performance of the case-based planning process.

Cloudy inhomogenities in artificial fabrics are graded by a fast method which is based on a Laplacian pyramid decomposition of the fabric image. This band-pass representation takes into account the scale character of the cloudiness. A quality measure of the entire cloudiness is obtained as a weighted mean over the variances of all scales.

With this article we first like to give a brief review on wavelet thresholding methods in non-Gaussian and non-i.i.d. situations, respectively. Many of these applications are based on Gaussian approximations of the empirical coefficients. For regression and density estimation with independent observations, we establish joint asymptotic normality of the empirical coefficients by means of strong approximations. Then we describe how one can prove asymptotic normality under mixing conditions on the observations by cumulant techniques.; In the second part, we apply these non-linear adaptive shrinking schemes to spectral estimation problems for both a stationary and a non-stationary time series setup. For the latter one, in a model of Dahlhaus on the evolutionary spectrum of a locally stationary time series, we present two different approaches. Moreover, we show that in classes of anisotropic function spaces an appropriately chosen wavelet basis automatically adapts to possibly different degrees of regularity for the different directions. The resulting fully-adaptive spectral estimator attains the rate that is optimal in the idealized Gaussian white noise model up to a logarithmic factor.

This paper is devoted to the mathematica l description of the solution of the so-called rainflow reconstruction problem, i.e. the problem of constructing a time series with an a priori given rainflow m atrix. The algorithm we present is mathematically exact in the sense that no app roximations or heuristics are involved. Furthermore it generates a uniform distr ibution of all possible reconstructions and thus an optimal randomization of the reconstructed series. The algorithm is a genuine on-line scheme. It is easy adj ustable to all variants of rainflow such as sysmmetric and asymmetric versions a nd different residue techniques.

In the automotive industry both the loca l strain approach and rainflow counting are well known and approved tools in the numerical estimation of the lifetime of a new developed part especially in the automotive industry. This paper is devoted to the combination of both tools and a new algorithm is given that takes advantage of the inner structure of the most used damage parameters.

The ideas of texture analysis by means of the structure tensor are combined with the scale-space concept of anisotropic diffusion filtering. In contrast to many other nonlinear diffusion techniques, the proposed one uses a diffusion tensor instead of a scalar diffusivity. This allows true anisotropic behaviour. The preferred diffusion direction is determined according to the phase angle of the structure tensor. The diffusivity in this direction is increasing with the local coherence of the signal. This filter is constructed in such a way that it gives a mathematically well-funded scale-space representation of the original image. Experiments demonstrate its usefulness for the processing of interrupted one-dimensional structures such as fingerprint and fabric images.

A survey on continuous, semidiscrete and discrete well-posedness and scale-space results for a class of nonlinear diffusion filters is presented. This class does not require any monotony assumption (comparison principle) and, thus, allows image restoration as well. The theoretical results include existence, uniqueness, continuous dependence on the initial image, maximum-minimum principles, average grey level invariance, smoothing Lyapunov functionals, and convergence to a constant steady state.

Hyperbolic planes
(1995)

We present an approach to systematically describing case-based reasoning systems bydifferent kinds of criteria. One main requirement was the practical relevance of these criteria and their usability for real-life applications. We report on the results we achieved from a case study carried out in the INRECA1 Esprit project.

Load balancing is one of the central problems that have to be solved in parallel computation. Here, the problem of distributed, dynamic load balancing for massive parallelism is addressed. A new local method, which realizes a physical analogy to equilibrating liquids in multi-dimensional tori or hypercubes, is presented. It is especially suited for communication mechanisms with low set-up to transfer ratio occurring in tightly-coupled or SIMD systems. By successive shifting single load elements to the direct neighbors, the load is automatically transferred to lightly loaded processors. Compared to former methods, the proposed Liquid model has two main advantages. First, the task of load sharing is combined with the task of load balancing, where the former has priority. This property is valuable in many applications and important for highly dynamic load distribution. Second, the Liquid model has high efficiency. Asymptotically, it needs O(D . K . Ldiff ) load transfers to reach the balanced state in a D-dimensional torus with K processors per dimension and a maximum initial load difference of Ldiff . The Liquid model clearly outperforms an earlier load balancing approach, the nearest-neighbor-averaging. Besides a survey of related research, analytical results within a formal framework are derived. These results are validated by worst-case simulations in one-and two-dimensional tori with up to two thousand processors.

One of the many features needed to support the activities of autonomous systems is the ability of motion planning. It enables robots to move in their environment securely and to accomplish given tasks. Unfortunately, the control loop comprising sensing, planning, and acting has not yet been closed for robots in dynamic environments. One reason involves the long execution times of the motion planning component. A solution for this problem is offered by the use of highly computational parallelism. Thus, an important task is the parallelization of existing motion planning algorithms for robots so that they are suitable for highly computational parallelism. In several cases, completely new algorithms have to be designed, so that a parallelization is feasible. In this survey, we review recent approaches to motion planning using parallel computation.

We have presented a novel approach to parallel motion planning for robot manipulators in 3D workspaces. The approach is based on arandomized parallel search algorithm and focuses on solving the path planning problem for industrial robot arms working in a reasonably cluttered workspace. The path planning system works in the discretized con guration space, which needs not to be represented explicitly. The parallel search is conducted by a number of rule-based sequential search processes, which work to find a path connecting the initial con guration to the goal via a number of randomly generated subgoal con gurations. Since the planning performs only on-line collision tests with proper proximity information without using pre-computed information, the approach is suitable for planning problems with multirobot or dynamic environments. The implementation has been carried outontheparallel virtual machine (PVM) of a cluster of SUN4 workstations and SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and that parallel computation increases the e ciency of motion planning signi cantly.

The paper presents a novel approach to parallel motion planning for robot manipulators in 3D workspaces. The approach is based on a randomized parallel search algorithm and focuses on solving the path planning problem for industrial robot arms working in a reasonably cluttered workspace. The path planning system works in the discretized configuration space which needs not to be represented explicitly. The parallel search is conducted by a number of rule-based sequential search processes, which work to nd a path connecting the initial configuration to the goal via a number of randomly generated subgoal configurations. Since the planning performs only on-line collision tests with proper proximity information without using pre-computed information, the approach is suitable for planning problems with multirobot or dynamic environments. The implementation has been carried out on the parallel virtual machine (PVM) of a cluster of SUN4 workstations and SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and that parallel computation increases the efficiency of motion planning significantly.

We describe a platform for the portable and secure execution of mobile agents writtenin various interpreted languages on top of a common run-time core. Agents may migrate at anypoint in their execution, fully preserving their state, and may exchange messages with otheragents. One system may contain many virtual places, each establishing a domain of logicallyrelated services under a common security policy governing all agents at this place. Agents areequipped with allowances limiting their resource accesses, both globally per agent lifetime andlocally per place. We discuss aspects of this architecture and report about ongoing work.

For periodically driven systems, quantum tunneling between classical resonant stability islands in phase space separated by invariant KAM curves or chaotic regions manifests itself by oscillatory motion of wave packets centered on such an island, by multiplet splittings of the quasienergy spectrum, and by phase space localisation of the quasienergy states on symmetry related ,ux tubes. Qualitatively di,erent types of classical resonant island formation | due to discrete symmetries of the system | and their quantum implications are analysed by a (uniform) semiclassical theory. The results are illustrated by a numerical study of a driven non-harmonic oscillator.

The Filter-Diagonalization Method is used to ,nd the broad and even overlapping resonances of a 1D Hamiltonian used before as a test model for new resonance theories and computational methods. It is found that the use of several complex-scaled cross-correlation probability amplitudes from short time propagation enables the calculation of broad overlapping resonances, which can not be resolved from the amplitude of a single complex-scaled autocorrelation calculation.

The first observation of self-focusing of dipolar spin waves in garnet film media is reported. In particular, we show that the quasi-stationary diffraction of a finite-aperture spin wave beam in a focusing medium leads to the concentration of the wave power in one focal point rather than along a certain line (channel). The obtained results demonstrate the wide applicability of non-linear spin wave media to study non-linear wave phenomena using an advanced combined microwave-Brillouin light scattering technique for a two-dimensional mapping of the spin wave amplitudes.

Brillouin light scattering investigations of exchange biased (110)-oriented NiFe/FeMn bilayers
(1997)

All contributing magnetic anisotropies in (110)-oriented exchange biased Ni 80 Fe 20 /Fe 50 Mn 50 double layers prepared by molecular beam epitaxy on Cu(110) single crystals have been determined by means of Brillouin light scattering. Upon covering the Ni 80 Fe 20 films by Fe 50 Mn 50 , a unidirectional anisotropy contribution appears, which is consistent with the measured exchange bias field. The uniaxial and fourfold in-plane anisotropy contributions are largely modified by an amount, which scales with the Ni 80 Fe 20 thickness, indicating an interface effect. The strong uniaxial anisotropy contribution shows an in-plane switching of the easy axis from [110] to [001] with increasing Ni 80 Fe 20 -layer thickness. The large mode width of the spin wave excitations, which exceeds the linewidth of uncovered Ni 80 Fe 20 films by a factor of more than six, indicates large spatial variations of the exchange coupling constant. (C) 1998 American Institute of Physics.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

We report on Brillouin light scattering investigations of the elastic properties in Co/Ni superlattices which exhibit localized electronic eigenstates near the Fermi level causing an oscillation of the resistivity as a function of the superlattice periodicity A. No oscillations of the Rayleigh and Sezawa mode as a function of A could be observed within an error margin of +- 2% indicating that the localized electronic states do not contribute to the elastic constants.

We derive minimax rates for estimation in anisotropic smoothness classes. This rate is attained by a coordinatewise thresholded wavelet estimator based on a tensor product basis with separate scale parameter for every dimension. It is shown that this basis is superior to its one-scale multiresolution analog, if different degrees of smoothness in different directions are present.; As an important application we introduce a new adaptive wavelet estimator of the time-dependent spectrum of a locally stationary time series. Using this model which was resently developed by Dahlhaus, we show that the resulting estimator attains nearly the rate, which is optimal in Gaussian white noise, simultaneously over a wide range of smoothness classes. Moreover, by our new approach we overcome the difficulty of how to choose the right amount of smoothing, i.e. how to adapt to the appropriate resolution, for reconstructing the local structure of the evolutionary spectrum in the time-frequency plane.

One of the many features needed to support the activities of autonomous systems is the ability of motion planning. It enables robots to move in their environment securely and to accomplish given tasks. Unfortunately, the control loop comprising sensing, planning, and acting has not yet been closed for robots in dynamic environments. One reason involves the long execution times of the motion planning component. A solution for this problem is offered by the use of highly computational parallelism. Thus, an important task is the parallelization of existing motion planning algorithms for robots so that they are suitable for highly computational parallelism. In several cases, completely new algorithms have to be designed, so that a parallelization is feasible. In this survey, we review recent approaches to motion planning using parallel computation. As a classification scheme, we use the structure given by the different approaches to the robot's motion planning. For each approach, the available parallel processing methods are discussed. Each approach is uniquely assigned a class. Finally, for each referenced research work, a list of keywords is given.

This paper presents the different possibilities for parallel processing in robot control architectures. At the beginning, we shortly review the historic development of control architectures. Then, a list of requirements for control architectures is set up from a parallel processing point of view. As our main topic, we identify the levels of parallel processing in robot control architectures. With each level of parallelism, examples for a typical robot control architecture are presented. Finally, a list of keywords is provided for each previous work we refer to.

The quasienergy spectrum of a periodically driven quantum system is constructed from classical dynamics by means of the semiclassical initial value representation using coherent states. For the first time, this method is applied to explicitly time dependent systems. For an anharmonic oscillator system with mixed chaotic and regular classical dynamics, the entire quantum spectrum (both regular and chaotic states) is reproduced semiclassically with surprising accuracy. In particular, the method is capable to account for the very small tunneling splittings.

The dispersions of dipolar (Damon-Eshbach modes) and exchange dominated spin waves are calculated for in-plane magnetized thin and ultrathin cubic films with (111) crystal orientation and the results are compared with those obtained for the other principal planes. The properties of these magnetic excitations are examined from the point of view of Brillouin light scattering experiments. Attention is paid to study the spin-wave frequency variation as a function of the magnetization direction in the film plane for different film thicknesses. Interface anisotropies and the bulk magnetocrystalline anisotropy are considered in the calculation. A quantitative comparison between an analytical expression obtained in the limit of small film thickness and wave vector and the full numerical calculation is given.

A formalism is developed for calculating the quasienergy states and spectrum for time-periodic quantum systems when a time-periodic dynamical invariant operator with a nondegenerate spectrum is known. The method, which circumvents the integration of the Schr-odinger equation, is applied to an integrable class of systems, where the global invariant operator is constructed. Furthermore, a local integrable approximation for more general non-integrable systems is developed. Numerical results are presented for the doubleresonance model.

We consider N coupled linear oscillators with time-dependent coecients. An exact complex amplitude - real phase decomposition of the oscillatory motion is constructed. This decomposition is further used to derive N exact constants of motion which generalise the so-called Ermakov-Lewis invariant of a single oscillator. In the Floquet problem of periodic oscillator coecients we discuss the existence of periodic complex amplitude functions in terms of existing Floquet solutions.

The Wannier-Bloch resonance states are metastable states of a quantum particle in a space-periodic potential plus a homogeneous field. Here we analyze the states of quantum particle in space- and time-periodic potential. In this case the dynamics of the classical counterpart of the quantum system is either quasiregular or chaotic depending on the driving frequency. It is shown that both the quasiregular and the chaotic motion can also support quantum resonances. The relevance of the obtained result to the problem a of crystal electron under simultaneous influence of d.c. and a.c. electric fields is briefly discussed. PACS: 73.20Dx, 73.40Gk, 05.45.+b

We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities have universal character predicted by the random matrix theory of chaotic scattering.

We prove that there exists a positive \(\alpha\) such thatfor any integer \(\mbox{$d\ge 3$}\) and any topological types \(\mbox{$S_1,\dots,S_n$}\) of plane curve singularities, satisfying \(\mbox{$\mu(S_1)+\dots+\mu(S_n)\le\alpha d^2$}\), there exists a reduced irreducible plane curve of degree \(d\) with exactly \(n\) singular points of types \(\mbox{$S_1,\dots,S_n$}\), respectively. This estimate is optimal with respect to theexponent of \(d\). In particular, we prove that for any topological type \(S\) there exists an irreducible polynomial of degree \(\mbox{$d\le 14\sqrt{\mu(S)}$}\) having a singular point of type \(S\).

We present a parallel path planning method that is able to automatically handle multiple goal configurations as input. There are two basic approaches, goal switching and bi-directional search, which are combined in the end. Goal switching dynamically selects a fa-vourite goal depending on some distance function. The bi-directional search supports the backward search direction from the goal to the start configuration, which is probably faster. The multi-directional search with goal switching combines the advantages of goal switching and bi-directional search. Altogether, the planning system is enabled to select one of the pref-erable goal configuration by itself. All concepts are experimentally validated for a set of benchmark problems consisting of an industrial robot arm with six degrees of freedom in a 3D environment.

We present a parallel control architecture for industrial robot cells. It is based on closed functional components arranged in a flat communication hierarchy. The components may be executed by different processing elements, and each component itself may run on multiple processing elements. The system is driven by the instructions of a central cell control component. We set up necessary requirements for industrial robot cells and possible parallelization levels. These are met by the suggested robot control architecture. As an example we present a robot work cell and a component for motion planning, which fits well in this concept.

Enhancing the quality of surgical interventions is one of the main goals of surgical robotics. Thus we have devised a surgical robotic system for maxillofacial surgery which can be used as an intelligent intraoperative surgical tool. Up to now a surgeon preoperatively plans an intervention by studying twodimensional X-rays, thus neglecting the third dimension. In course of the special research programme "Computer and Sensor Aided Surgery" a planning system has been developed at our institute, which allows the surgeon to plan an operation on a threedimensional computer model of the patient . Transposing the preoperatively planned bone cuts, bore holes, cavities, and milled surfaces during surgery still proves to be a problem, as no adequate means are at hand: the actual performance of the surgical intervention and the surgical outcome solely depend on the experience and the skill of the operating surgeon. In this paper we present our approach of a surgical robotic system to be used in maxillofacial surgery. Special stress is being laid upon the modelling of the environment in the operating theatre and the motion planning of our surgical robot .

This paper is based on a path planning approach we reported earlier for industrial robot arms with 6 degrees of freedom in an on-line given 3D environment. It has on-line capabilities by searching in an implicit and descrete configuration space and detecting collisions in the Cartesian workspace by distance computation based on the given CAD model. Here, we present different methods for specifying the C-space discretization. Besides the usual uniform and heuristic discretization, we investigate two versions of an optimal discretization for an user-predefined Cartesian resolution. The different methods are experimentally evaluated. Additionally, we provide a set of 3- dimensional benchmark problems for a fair comparison of path planner. For each benchmark, the run-times of our planner are between only 3 and 100 seconds on a Pentium PC with 133 MHz.

In this paper, the problem of path planning for robot manipulators with six degrees of freedom in an on-line provided three-dimensional environment is investigated. As a basic approach, the best-first algorithm is used to search in the implicit descrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on the given CAD model. The basic approach is extended by three simple mechanisms and results in a heuristic hierarchical search. This is done by adjusting the stepsize of the search to the distance between the robot and the obstacles. As a first step, we show encouraging experimental results with two degrees of freedom for five typical benchmark problems.

This paper presents a new approach to parallel path planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based a best-first search algorithm and needs no essential off-line computations. The algorithm works in an implicitly discrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on polyhedral models of the robot and the obstacles. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel path planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows very good speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

This paper presents a new approach to parallel motion planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based on the A-search algorithm and needs no essential off-line computations. The algorithm works in an implicitly descrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on the given CAD model. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel motion planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows linear speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

This paper discusses the problem of automatic off-line programming and motion planning for industrial robots. At first, a new concept consisting of three steps is proposed. The first step, a new method for on-line motion planning is introduced. The motion planning method is based on the A*-search algorithm and works in the implicit configuration space. During searching, the collisions are detected in the explicitly represented Cartesian workspace by hierarchical distance computation. In the second step, the trajectory planner has to transform the path into a time and energy optimal robot program. The practical application of these two steps strongly depends on the method for robot calibration with high accuracy, thus, mapping the virtual world onto the real world, which is discussed in the third step.

This paper presents a new approach to parallel motion planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based on the A*-search algorithm and needs no essential off-line computations. The algorithm works in an implicitly descrete configuration space. Collisions are detected in the cartesian workspace by hierarchical distance computation based on the given CAD model. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel motion planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows linear, and sometimes even superlinear speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

A practical distributed planning and control system for industrial robots is presented. The hierarchical concept consists of three independent levels. Each level is modularly implemented and supplies an application interface (API) to the next higher level. At the top level, we propose an automatic motion planner. The motion planner is based on a best-first search algorithm and needs no essential off-line computations. At the middle level, we propose a PC-based robot control architecture, which can easily be adapted to any industrial kinematics and application. Based on a client/server-principle, the control unit estab-lishes an open user interface for including application specific programs. At the bottom level, we propose a flexible and modular concept for the integration of the distributed motion control units based on the CAN bus. The concept allows an on-line adaptation of the control parameters according to the robot's configuration. This implies high accuracy for the path execution and improves the overall system performance.

We present two techniques for reasoning from cases to solve classification tasks: Induction and case-based reasoning. We contrast the two technologies (that are often confused) and show how they complement each other. Based on this, we describe how they are integrated in one single platform for reasoning from cases: The Inreca system.

The hallmark of traditional Artificial Intelligence (AI) research is the symbolic representation and processing of knowledge. This is in sharp contrast to many forms of human reasoning, which to an extraordinary extent, rely on cases and (typical) examples. Although these examples could themselves be encoded into logic, this raises the problem of restricting the corresponding model classes to include only the intended models.There are, however, more compelling reasons to argue for a hybrid representa-tion based on assertions as well as examples. The problems of adequacy, availability of information, compactness of representation, processing complexity, and last but not least, results from the psychology of human reasoning, all point to the same conclusion: Common sense reasoning requires different knowledge sources and hybrid reasoning principles that combine symbolic as well as semantic-based inference. In this paper we address the problem of integrating semantic representations of examples into automateddeduction systems. The main contribution is a formal framework for combining sentential with direct representations. The framework consists of a hybrid knowledge base, made up of logical formulae on the one hand and direct representations of examples on the other, and of a hybrid reasoning method based on the resolution calculus. The resulting hybrid resolution calculus is shown to be sound and complete.

Unification in an Extensional Lambda Calculus with Ordered Function Sorts and Constant Overloading
(1999)

We develop an order-sorted higher-order calculus suitable forautomatic theorem proving applications by extending the extensional simplytyped lambda calculus with a higher-order ordered sort concept and constantoverloading. Huet's well-known techniques for unifying simply typed lambdaterms are generalized to arrive at a complete transformation-based unificationalgorithm for this sorted calculus. Consideration of an order-sorted logicwith functional base sorts and arbitrary term declarations was originallyproposed by the second author in a 1991 paper; we give here a correctedcalculus which supports constant rather than arbitrary term declarations, aswell as a corrected unification algorithm, and prove in this setting resultscorresponding to those claimed there.

An important research problem is the incorporation of "declarative" knowledge into an automated theorem prover that can be utilized in the search for a proof. An interesting pro-posal in this direction is Alan Bundy's approach of using explicit proof plans that encapsulatethe general form of a proof and is instantiated into a particular proof for the case at hand. Wegive some examples that show how a "declarative" highlevel description of a proof can be usedto find proofs of apparently "similiar" theorems by analogy. This "analogical" information isused to select the appropriate axioms from the database so that the theorem can be proved.This information is also used to adjust some options of a resolution theorem prover. In orderto get a powerful tool it is necessary to develop an epistemologically appropriate language todescribe proofs, for which a large set of examples should be used as a testbed. We presentsome ideas in this direction.

In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

In this article we formally describe a declarative approach for encoding plan operatorsin proof planning, the so-called methods. The notion of method evolves from the much studiedconcept tactic and was first used by Bundy. While significant deductive power has been achievedwith the planning approach towards automated deduction, the procedural character of the tacticpart of methods, however, hinders mechanical modification. Although the strength of a proofplanning system largely depends on powerful general procedures which solve a large class ofproblems, mechanical or even automated modification of methods is nevertheless necessary forat least two reasons. Firstly methods designed for a specific type of problem will never begeneral enough. For instance, it is very difficult to encode a general method which solves allproblems a human mathematician might intuitively consider as a case of homomorphy. Secondlythe cognitive ability of adapting existing methods to suit novel situations is a fundamentalpart of human mathematical competence. We believe it is extremely valuable to accountcomputationally for this kind of reasoning.The main part of this article is devoted to a declarative language for encoding methods,composed of a tactic and a specification. The major feature of our approach is that the tacticpart of a method is split into a declarative and a procedural part in order to enable a tractableadaption of methods. The applicability of a method in a planning situation is formulatedin the specification, essentially consisting of an object level formula schema and a meta-levelformula of a declarative constraint language. After setting up our general framework, wemainly concentrate on this constraint language. Furthermore we illustrate how our methodscan be used in a Strips-like planning framework. Finally we briefly illustrate the mechanicalmodification of declaratively encoded methods by so-called meta-methods.

Several activities around the world aim at integrating object-oriented data models with relational ones in order to improve database management systems. As a first result of these activities, object-relational database management systems (ORDBMS) are already commercially available and, simultaneously, are subject to several research projects. This (position) paper reports on our activities in exploiting object-relational database technology for establishing repository manager functionality supporting software engineering (SE) processes. We argue that some of the key features of ORDBMS can directly be exploited to fulfill many of the needs of SE processes. Thus, ORDBMS, as we think, are much better suited to support SE applications than any others. Nevertheless, additional functionality, e. g., providing adequate version management, is required in order to gain a completely satisfying SE repository. In order to remain flexible, we have developed a generative approach for providing this additional functionality. It remains to be seen whether this approach, in turn, can effectively exploit ORDBMS features. This paper, therefore, wants to show that ORDBMS can substantially contribute to both establishing and running SE repositories.

A straightforward formulation of a mathematical problem is mostly not ad-equate for resolution theorem proving. We present a method to optimize suchformulations by exploiting the variability of first-order logic. The optimizingtransformation is described as logic morphisms, whose operationalizations aretactics. The different behaviour of a resolution theorem prover for the sourceand target formulations is demonstrated by several examples. It is shown howtactical and resolution-style theorem proving can be combined.

We show how to buildup mathematical knowledge bases usingframes. We distinguish three differenttypes of knowledge: axioms, definitions(for introducing concepts like "set" or"group") and theorems (for relating theconcepts). The consistency of such know-ledge bases cannot be proved in gen-eral, but we can restrict the possibilit-ies where inconsistencies may be impor-ted to very few cases, namely to the oc-currence of axioms. Definitions and the-orems should not lead to any inconsisten-cies because definitions form conservativeextensions and theorems are proved to beconsequences.

In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.

Extending existing calculi by sorts is astrong means for improving the deductive power offirst-order theorem provers. Since many mathemat-ical facts can be more easily expressed in higher-orderlogic - aside the greater power of higher-order logicin principle - , it is desirable to transfer the advant-ages of sorts in the first-order case to the higher-ordercase. One possible method for automating higher-order logic is the translation of problem formulationsinto first-order logic and the usage of first-order the-orem provers. For a certain class of problems thismethod can compete with proving theorems directlyin higher-order logic as for instance with the TPStheorem prover of Peter Andrews or with the Nuprlproof development environment of Robert Constable.There are translations from unsorted higher-order lo-gic based on Church's simple theory of types intomany-sorted first-order logic, which are sound andcomplete with respect to a Henkin-style general mod-els semantics. In this paper we extend correspond-ing translations to translations of order-sorted higher-order logic into order-sorted first-order logic, thus weare able to utilize corresponding first-order theoremprover for proving higher-order theorems. We do notuse any (lambda)-expressions, therefore we have to add so-called comprehension axioms, which a priori makethe procedure well-suited only for essentially first-order theorems. However, in practical applicationsof mathematics many theorems are essentially first-order and as it seems to be the case, the comprehen-sion axioms can be mastered too.

Higher-Order Tableaux
(1999)

Even though higher-order calculi for automated theorem prov-ing are rather old, tableau calculi have not been investigated yet. Thispaper presents two free variable tableau calculi for higher-order logicthat use higher-order unification as the key inference procedure. Thesecalculi differ in the treatment of the substitutional properties of equival-ences. The first calculus is equivalent in deductive power to the machine-oriented higher-order refutation calculi known from the literature, whereasthe second is complete with respect to Henkin's general models.

Many mathematical proofs are hard to generate forhumans and even harder for automated theoremprovers. Classical techniques of automated theoremproving involve the application of basic rules, of built-in special procedures, or of tactics. Melis (Melis 1993)introduced a new method for analogical reasoning inautomated theorem proving. In this paper we showhow the derivational analogy replay method is relatedand extended to encompass analogy-driven proof planconstruction. The method is evaluated by showing theproof plan generation of the Pumping Lemma for con-text free languages derived by analogy with the proofplan of the Pumping Lemma for regular languages.This is an impressive evaluation test for the analogicalreasoning method applied to automated theorem prov-ing, as the automated proof of this Pumping Lemmais beyond the capabilities of any of the current auto-mated theorem provers.

This paper addresses the decomposition of proofs as a means of constructingmethods in plan-based automated theorem proving. It shows also, howdecomposition can beneficially be applied in theorem proving by analogy.Decomposition is also useful for human-style proof presentation. We proposeseveral decomposition techniques that were found to be useful in automatedtheorem proving and give examples of their application.

This paper analyzes how mathematicians prove the-orems. The analysis is based upon several empiricalsources such as reports of mathematicians and math-ematical proofs by analogy. In order to combine thestrength of traditional automated theorem provers withhuman-like capabilities, the questions arise: Whichproblem solving strategies are appropriate? Which rep-resentations have to be employed? As a result of ouranalysis, the following reasoning strategies are recog-nized: proof planning with partially instantiated meth-ods, structuring of proofs, the transfer of subproofs andof reformulated subproofs. We discuss the represent-ation of a component of these reasoning strategies, aswell as its properties. We find some mechanisms neededfor theorem proving by analogy, that are not providedby previous approaches to analogy. This leads us to acomputational representation of new components andprocedures for automated theorem proving systems.

As global networks are being used by more and more people,they are becoming increasingly interesting for commercial appli-cations. The recent success and change in direction of the World-Wide Web is a clear indication for this. However, this success meta largely unprepared communications infrastructure. The Inter-net as an originally non-profit network did neither offer the secu-rity, nor the globally available accounting infrastructure byitself.These problems were addressed in the recent past, but in aseemingly ad-hoc manner. Several different accounting schemessensible for only certain types of commercial transactions havebeen developed, which either seem to neglect the problems ofscalability, or trade security for efficiency. Finally, some propos-als aim at achieving near perfect security at the expense of effi-ciency, thus rendering those systems to be of no practical use.In contrast, this paper presents a suitably configurable schemefor accounting in a general, widely distributed client/server envi-ronment. When developing the protocol presented in this paper,special attention has been paid to make this approach work wellin the future setting of high-bandwidth, high-latency internets.The developed protocol has been applied to a large-scale distrib-uted application, a WWW-based software development environ-ment.

In this paper, we compare the BERKOM globally ac-cessible services project (GLASS) with the well-knownWorld-Wide Web with respect to the ease of development,realization, and distribution of multimedia presentations.This comparison is based on the experiences we gainedwhen implementing a gateway between GLASS and theWorld-Wide Web. Since both systems are shown to haveobvious weaknesses, we are concluding this paper with apresentation of a better way to multimedia document en-gineering and distribution. This concept is based on awell-accepted approach to function-shipping in the Inter-net: the Java language, permitting for example a smoothintegration of GLASS92 MHEG objects and WWW HTMLpages within one common environment.

In this paper, a framework for globally distributed soft-ware development and management environments, whichwe call Booster is presented. Additionally, the first experi-ences with WebMake, an application developed to serve asan experimental platform for a software developmentenvironment based on the World Wide Web and theBooster framework is introduced. Booster encompasses thebasic building blocks and mechanisms necessary tosupport a truly cooperative distributed softwaredevelopment from the very beginning to the last steps in asoftware life cycle. It is thus a precursor of the GlobalSoftware Highway, in which providers and users can meetfor the development, management, exchange and usage ofall kind of software.

In order to reduce the elapsed time of a computation, a pop-ular approach is to decompose the program into a collection of largelyindependent subtasks which are executed in parallel. Unfortunately, it isoften observed that tightly-coupled parallel programs run considerablyslower than initially expected. In this paper, a framework for the anal-ysis of parallel programs and their potential speedup is presented. Twoparameters which strongly affect the scalability of parallelism are iden-tified, namely the grain of synchronization, and the degree to which thetarget hardware is available. It is shown that for certain classes of appli-cations speedup is inherently poor, even if the program runs under theidealized conditions of perfect load balance, unbounded communicationbandwidth and negligible communication and parallelization overhead.Upper bounds are derived for the speedup that can be obtained in threedifferent types of computations. An example illustrates the main find-ings.

In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.

Extending the planADbased paradigm for auto-mated theorem proving, we developed in previ-ous work a declarative approach towards rep-resenting methods in a proof planning frame-work to support their mechanical modification.This paper presents a detailed study of a classof particular methods, embodying variations ofa mathematical technique called diagonaliza-tion. The purpose of this paper is mainly two-fold. First we demonstrate that typical math-ematical methods can be represented in ourframework in a natural way. Second we illus-trate our philosophy of proof planning: besidesplanning with a fixed repertoire of methods,metaADmethods create new methods by modify-ing existing ones. With the help of three differ-ent diagonalization problems we present an ex-ample trace protocol of the evolution of meth-ods: an initial method is extracted from a par-ticular successful proof. This initial method isthen reformulated for the subsequent problems,and more general methods can be obtained byabstracting existing methods. Finally we comeup with a fairly abstract method capable ofdealing with all the three problems, since it cap-tures the very key idea of diagonalization.

Most automated theorem provers suffer from the problem thatthey can produce proofs only in formalisms difficult to understand even forexperienced mathematicians. Effort has been made to reconstruct naturaldeduction (ND) proofs from such machine generated proofs. Although thesingle steps in ND proofs are easy to understand, the entire proof is usuallyat a low level of abstraction, containing too many tedious steps. To obtainproofs similar to those found in mathematical textbooks, we propose a newformalism, called ND style proofs at the assertion level , where derivationsare mostly justified by the application of a definition or a theorem. Aftercharacterizing the structure of compound ND proof segments allowing asser-tion level justification, we show that the same derivations can be achieved bydomain-specific inference rules as well. Furthermore, these rules can be rep-resented compactly in a tree structure. Finally, we describe a system calledPROVERB , which substantially shortens ND proofs by abstracting them tothe assertion level and then transforms them into natural language.

Planning Argumentative Texts
(1999)

This paper presents PROVERB a text planner forargumentative texts. PROVERB's main feature isthat it combines global hierarchical planning and un-planned organization of text with respect to local de-rivation relations in a complementary way. The formersplits the task of presenting a particular proof intosubtasks of presenting subproofs. The latter simulateshow the next intermediate conclusion to be presentedis chosen under the guidance of the local focus.

This paper deals with the reference choices involved in thegeneration of argumentative text. A piece of argument-ative text such as the proof of a mathematical theoremconveys a sequence of derivations. For each step of de-rivation, the premises (previously conveyed intermediateresults) and the inference method (such as the applica-tion of a particular theorem or definition) must be madeclear. The appropriateness of these references cruciallyaffects the quality of the text produced.Although not restricted to nominal phrases, our refer-ence decisions are similar to those concerning nominalsubsequent referring expressions: they depend on theavailability of the object referred to within a context andare sensitive to its attentional hierarchy . In this paper,we show how the current context can be appropriatelysegmented into an attentional hierarchy by viewing textgeneration as a combination of planned and unplannedbehavior, and how the discourse theory of Reichmann canbe adapted to handle our special reference problem.

Most automated theorem provers suffer from the problemthat the resulting proofs are difficult to understand even for experiencedmathematicians. An effective communication between the system andits users, however, is crucial for many applications, such as in a mathematical assistant system. Therefore, efforts have been made to transformmachine generated proofs (e.g. resolution proofs) into natural deduction(ND) proofs. The state-of-the-art procedure of proof transformation fol-lows basically its completeness proof: the premises and the conclusionare decomposed into unit literals, then the theorem is derived by mul-tiple levels of proofs by contradiction. Indeterminism is introduced byheuristics that aim at the production of more elegant results. This inde-terministic character entails not only a complex search, but also leads tounpredictable results.In this paper we first study resolution proofs in terms of meaningful op-erations employed by human mathematicians, and thereby establish acorrespondence between resolution proofs and ND proofs at a more ab-stract level. Concretely, we show that if its unit initial clauses are CNFsof literal premises of a problem, a unit resolution corresponds directly toa well-structured ND proof segment that mathematicians intuitively un-derstand as the application of a definition or a theorem. The consequenceis twofold: First it enhances our intuitive understanding of resolutionproofs in terms of the vocabulary with which mathematicians talk aboutproofs. Second, the transformation process is now largely deterministicand therefore efficient. This determinism also guarantees the quality ofresulting proofs.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago, but there has not been a satisfact-ory mechanization. Recent years have seen a thorough investigation ofthe framework of many-valued truth-functional logics. However, strongKleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problemby applying recent methods from sorted logics. This paper presents atableau calculus that combines the proper treatment of partial functionswith the efficiency of sorted calculi.

The semantics of everyday language and the semanticsof its naive translation into classical first-order language consider-ably differ. An important discrepancy that is addressed in this paperis about the implicit assumption what exists. For instance, in thecase of universal quantification natural language uses restrictions andpresupposes that these restrictions are non-empty, while in classi-cal logic it is only assumed that the whole universe is non-empty.On the other hand, all constants mentioned in classical logic arepresupposed to exist, while it makes no problems to speak about hy-pothetical objects in everyday language. These problems have beendiscussed in philosophical logic and some adequate many-valuedlogics were developed to model these phenomena much better thanclassical first-order logic can do. An adequate calculus, however, hasnot yet been given. Recent years have seen a thorough investigationof the framework of many-valued truth-functional logics. UnfortuADnately, restricted quantifications are not truth-functional, hence theydo not fit the framework directly. We solve this problem by applyingrecent methods from sorted logics.

Typical instances, that is, instances that are representative for a particular situ-ation or concept, play an important role in human knowledge representationand reasoning, in particular in analogical reasoning. This wellADknown obser-vation has been a motivation for investigations in cognitive psychology whichprovide a basis for our characterization of typical instances within conceptstructures and for a new inference rule for justified analogical reasoning withtypical instances. In a nutshell this paper suggests to augment the proposi-tional knowledge representation system by a non-propositional part consistingof concept structures which may have directly represented instances as ele-ments. The traditional reasoning system is extended by a rule for justifiedanalogical inference with typical instances using information extracted fromboth knowledge representation subsystems.

This paper describes how knowledge-based techniques can be used to overcome problems of workflow management in engineering applications. Using explicit process and product models as a basis for a workflow interpreter allows to alternate planning and execution steps, resulting in an increased flexibility of project coordination and enactment. To gain the full advantages of this flexibility, change processes have to be supported by the system. These require an improved traceability of decisions and have to be based on dependency management and change notification mechanisms. Our methods and techniques are illustrated by two applications: Urban land-use planning and software process modeling.

About the approach The approach of TOPO was originally developed in the FABEL project1[1] to support architects in designing buildings with complex installations. Supplementing knowledge-based design tools, which are available only for selected subtasks, TOPO aims to cover the whole design process. To that aim, it relies almost exclusively on archived plans. Input to TOPO is a partial plan, and output is an elaborated plan. The input plan constitutes the query case and the archived plans form the case base with the source cases. A plan is a set of design objects. Each design object is defined by some semantic attributes and by its bounding box in a 3-dimensional coordinate system. TOPO supports the elaboration of plans by adding design objects.

INRECA offers tools and methods for developing, validating, and maintaining classification, diagnosis and decision support systems. INRECA's basic technologies are inductive and case-based reasoning [9]. INRECA fully integrates [2] both techniques within one environment and uses the respective advantages of both technologies. Its object-oriented representation language CASUEL [10, 3] allows the definition of complex case structures, relations, similarity measures, as well as background knowledge to be used for adaptation. The objectoriented representation language makes INRECA a domain independent tool for its destined kind of tasks. When problems are solved via case-based reasoning, the primary kind of knowledge that is used during problem solving is the very specific knowledge contained in the cases. However, in many situations this specific knowledge by itself is not sufficient or appropriate to cope with all requirements of an application. Very often, background knowledge is available and/or necessary to better explore and interpret the available cases [1]. Such general knowledge may state dependencies between certain case features and can be used to infer additional, previously unknown features from the known ones.

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

The Filter-Diagonalization Method is applied to time periodic Hamiltonians and used to find selectively the regular and chaotic quasienergies of a driven 2D rotor. The use of N cross-correlation probability amplitudes enables a selective calculation of the quasienergies from short time propagation to the time T (N). Compared to the propagation time T (1) which is required for resolving the quasienergy spectrum with the same accuracy from auto-correlation calculations, the cross-correlation time T (N) is shorter by the factor N , that is T (1) = N T (N).

The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.